
Opal Kelly

Opal Kelly’s FrontPanel software is designed to provide controllability and observability for FPGA de-
signs. It’s unique design allows users to describe their own control panels using industry-standard XML
descriptions of components such as LEDs, hex displays, push buttons, toggle buttons, triggers, and so
on. The components then connect to endpoints within the user’s FPGA design. Once connected, the
interface details are transparent. FrontPanel handles all interaction between the virtual controls and
the FPGA internals. In the end, FrontPanel eliminates the time and effort of interfacing to a design and
greatly assists in the external controllability and observability of that design.

A new way to control and observe FPGA designs
through virtual instruments on your PC.

FrontPanel™

Software, documentation, samples, and related materials are

Copyright © 2005-2015 Opal Kelly Incorporated.

Opal Kelly Incorporated
Portland, Oregon
http://www.opalkelly.com

All rights reserved. Unauthorized duplication, in whole or part, of this document by any means except for brief
excerpts in published reviews is prohibited without the express written permission of Opal Kelly Incorporated.

Opal Kelly, the Opal Kelly Logo, and FrontPanel are trademarks of Opal Kelly Incorporated.

Linux is a registered trademark of Linus Torvalds. Microsoft and Windows are both registered trademarks of
Microsoft Corporation. All other trademarks referenced herein are the property of their respective owners and no
trademark rights to the same are claimed.

Revision History:
Date Description
20101201 Initial release with both USB and PCI Express.
20101211 Fixed USB BTPipeOut timing diagram.
20111221 Added note about 32-bit and 64-bit API usage.
20120103 Added QNX application note.
20120313 Updated PCIe performance metrics.
20120608 Updates with USB 3.0.
20121002 Fix typo in QNX section.
20121003 FrontPanel Interface Update.
20121112 Additional information about wrapper APIs.
20130117 Fixed direction in the USB 3.0 okRegisterBridge pinout table.
20130409 Removed references to GetDeviceListID().
20130810 Added command line arguments.
20130918 Added documentation for okFilePipe blocksize parameter.
20131114 Additional information on Registers API. Added Device Sensors and Device Settings APIs.
20140505 Change references to okFrontPanelDLL.cpp to the new import library style.
20140808 Fix several typos.
20141220 Remove reference to okFrontPanel.cpp.
20150120 Added new Simulation Sample.
20150126 Updated 32-bit / 64-bit architecture notes.
20150309 Updated FrontPanel Application notes and screenshots.

Contents

An Introduction to FrontPanel . 7
Terminology . 7
Basic Functionality . 8

Peripheral Configuration . 8
Flexibility Outside the Design . 8

Controllability . 9
Observability . 9

XML and FrontPanel Components . 9
HDL Endpoints . 10
Application Programmer’s Interface (API) . 10

Designing with FrontPanel . 11
Endpoints . 11

Wires . 13
Triggers. 13
Pipes . 13
Block-Throttled Pipes . 14
Registers . 14

Components . 14
Performance Notes . 14

Wires and Triggers . 15
Pipes (Bulk Transfers) . 15
Block-Throttled Pipes (Bulk Transfers) . 16
Isochronous Transfers? . 17

Application Programmer’s Interface . 19
API Reference Guide . 19
Samples . 20

Organization . 20
Loading the Library . 20
The okCFrontPanel Class . 21

Device Interaction (USB and PCI Express) . 21
Device Configuration . 22
FPGA Communication . 22

Communicating with Multiple Devices . 23
Querying Attached Devices . 23
Connecting to a Specific Device . 24

PLL Configuration . 24
Preset PLL Configuration . 24
Software PLL Configuration . 24

System Flash (USB 3.0) . 24
API Communication . 25

Wires . 25
Triggers. 25
Pipes . 26
Block-Throttled Pipes . 26
Registers (USB 3.0) . 27

Reset Profiles (USB 3.0 Only) . 27
Device Sensors (USB 3.0 Only) . 28

GetDeviceSensors API . 29
Device Sensor Parameters . 29

Device Settings (USB 3.0 Only) . 30
Persistent Settings . 30

Non-Persistent Settings . 30
Setting Store . 31

FrontPanel API Example Usage . 31
Regarding Device Ownership (Multithread or Multiprocess Access) 31
32-bit and 64-bit Architectures . 32

Windows DLL Usage . 32
Wrapped APIs . 32

Getters and Setters . 32
Data Types . 33

Python API . 34
Required Files . 34
Example Usage . 34

Java API . 34
Required Files . 34
Example Usage . 35

C# API . 35
Required Files . 36
Example Usage . 36

FrontPanel DLL . 36
QNX Usage . 37
Example Usage (C/C++) . 37
Example Usage (Matlab) . 39

Matlab API . 40
DLL Header File . 40
Support Status . 40

HDL Modules . 41
Endpoint Types . 41

Endpoint Addresses . 42
Register Bridge (USB 3.0 Only) . 42

Endpoint Data Widths . 42
Host Interface Clock Speed . 42
Building FPGA Projects with FrontPanel HDL Modules 43

 HDL Modules - USB 2.0 . 45
XEM3001v1 Note . 45
FPGA Resource Requirements . 45
Wire-OR . 46
The Host Interface . 46

okHost . 46
okWireIn . 47
okWireOut . 48
okTriggerIn . 48
okTriggerOut . 49
okPipeIn . 49
okPipeOut . 50
okBTPipeIn . 51
okBTPipeOut . 51

HDL Modules - USB 3.0 . 53
FPGA Resource Requirements . 53
Wire-OR . 53
The Host Interface . 54

okHost . 54
okWireIn . 55
okWireOut . 56
okTriggerIn . 56
okTriggerOut . 56
okPipeIn . 57
okPipeOut . 58
okBTPipeIn . 58

okBTPipeOut . 59
okRegisterBridge . 60

 HDL Modules - PCI Express . 63
FPGA Resource Requirements . 63
Wire-OR . 63
The Host Interface . 64

okHost . 64
okWireIn . 65
okWireOut . 65
okTriggerIn . 66
okTriggerOut . 66
okPipeIn . 67
okPipeOut . 68

Using the FrontPanel Application . 71
Main Window . 71

Load a FrontPanel Profile . 72
FPGA Configuration Download . 72
Device Setup . 73
Flash Programming Tool . 74

Device Sensors Panel . 74
PLL Configuration (CY22150) . 75

VCO Setup . 75
Divider #1 and #2 . 75
Outputs . 75
EEPROM Read . 76
EEPROM Write . 76
Apply . 76
Example PLL Configurations . 76

PLL Configuration (CY22393) . 76
Preferences . 76

Wire Update Rate . 77
Configure PLL Before FPGA Download . 77
Show Panels in Taskbar . 77
Enable Asynchronous Transfers (USB devices only) 77

Command Line Arguments . 77
Loading a Bitfile . 78
Loading a FrontPanel Profile . 78
Selecting a Device by Serial Number . 78

Component XML . 79
XML . 79

Basic Structure for FrontPanel . 79
Comments . 80
Start-Tags and End-Tags . 80
Case Sensitivity . 80

Element Data Types . 81
Component Types . 81

okStaticText . 82
okStaticBox . 82
okPushbutton (Wire In) . 82
okToggleButton (Wire In) . 83
okToggleCheck (Wire In) . 83
okDigitEntry (Wire In) . 84
okSlider (Wire In) . 85
okCombobox (Wire In) . 85
okLED (Wire Out) . 86
okHex (Wire Out) . 86
okDigitDisplay (Wire Out) . 87
okGauge (Wire Out) . 88

okTriggerButton (Trigger In) . 88
okTriggerSound (Trigger Out) . 89
okTriggerLog (Trigger Out) . 89
okTriggerMessage (Trigger Out) . 89
okFilePipe (Pipe In, Pipe Out, Trigger In) . 90
okPLL22150 . 91
okPLL22393 . 92
okKeyPanel (Wire In, Trigger In) . 93

FrontPanel Host Simulation . 97
System Simulation Model . 97
Simulation Requirements . 98

Limitations . 98
Test Fixture Simulation Requirements . 98

Reset . 99
Simulating Pipes . 99

Simulation Sample . 99
Required Files . 99
Running the Simulation . 100
Analyzing the Results . 101
Simulation Accuracy . 101

Appendix A: A Simple Example . 103
Toplevel Description . 104

Target Logic . 104
FrontPanel Interface Modules . 105

FrontPanel XML Description . 105
okPanel . 105
okToggleButton . 106
okLED . 106
okDigitEntry and okDigitDisplay . 106

Other Samples . 106

Appendix B: The Counters Sample . 109
Hardware Description . 109

Counter #1 . 110
Counter #2 . 110

Endpoints . 111
Wire In (0x00) . 111
Trigger In (0x40) . 111
Wire Out (0x20, 0x21, and 0x22) . 111

FrontPanel Components . 112
Panel 1: Counters Example . 112
Panel 2: Pushbuttons . 112

7

FrontPanel User’s Manual

www.opalkelly.com

An Introduction to FrontPanel

FrontPanel is a software platform designed to make FPGA integration easier, more productive,
more powerful, and more configurable. Most importantly, FrontPanel provides the basic func-
tionality required to configure and interface to the hardware including the FPGA and peripherals
on-board. After FPGA configuration, the host interface (USB or PCI Express) switches from a
high-speed download port to active communication with FrontPanel allowing you to interface and
control your FPGA design from within a single application. By virtualizing many common controls
found on typical evaluation (or prototyping) boards, FrontPanel enables far greater flexibility and
capability than pure hardware-based approaches.

The FrontPanel SDK (Software Development Kit) is a flexible API (Application Programmer’s
Interface) providing all the benefits of FrontPanel to your own custom application. These benefits
include:

• Device discovery and enumeration

• FPGA configuration

• FPGA communication using wires, triggers, pipes

• Abstraction to a common development platform for both USB and PCI Express devices

Terminology
Collectively, “FrontPanel” describes several components that make up the FrontPanel environ-
ment:

• “FrontPanel SDK” - Refers to the software development kit - the HDL, API, and docu-
mentation collectively.

8

FrontPanel User’s Manual

www.opalkelly.com

• “FrontPanel HDL” - HDL modules you design into your FPGA hardware that makes your
design “FrontPanel Enabled” and allows it to communicate with the PC.

• “FrontPanel Firmware” - Firmware running on the module’s microcontroller that provides
the conduit for FPGA/PC communication.

• “FrontPanel API” - A complete programmer’s interface allowing you to design custom PC
applications that communicate with your FrontPanel Enabled hardware.

• “FrontPanel Application” - A flexible software application providing virtual instrumentation
to your hardware such as LEDs, hex displays, numeric entry, pushbuttons, and so on.

Basic Functionality
FrontPanel is, most importantly, support software for Opal Kelly’s FPGA integration modules.
In that role, FrontPanel allows you to quickly and easily download FPGA configuration files via
USB or PCI Express to a target device. Once the configuration file is downloaded, the device
now takes on that design’s personality and is ready for use. If desired, FrontPanel’s role is now
complete.

Peripheral Configuration
Opal Kelly XEM devices contain additional peripherals to integrate FPGAs into your projects.
PLLs, audio CODECs, Flash memory, and other peripherals can benefit from the simple, single-
source configuration that FrontPanel offers. PLL outputs are independently configurable through
easy-to-use setup dialogs. Flash memory can be programmed, cleared, and reprogrammed in a
variety of ways and audio CODECs can be setup for different configurations.

Flexibility Outside the Design
FPGAs and other programmable logic devices have allowed engineers the unique opportunity
to construct complete hardware designs within the confines of a logic device. Unfortunately, this
means that many of the tools engineers typically employ to debug such designs such as oscil-
loscopes, LEDs, switches, and buttons are limited to viewing signals brought out to the external
pins of the device. FrontPanel takes these ideas closer to the realm of flexible logic devices
and makes them likewise flexible. In the end, however, FrontPanel provides controllability and
observability to your designs, reducing development time and putting a new face on your proto-
types.

9

FrontPanel User’s Manual

www.opalkelly.com

FrontPanel Software on PC FPGA

User DesignUSB
uController

Host Interface

Endpoint (Wire Out)

Endpoint (Wire In)

Endpoint (...)

Endpoint (Wire Out)

USB Cable

XML:
<object class="pushbutton">
 <label>Start</label>
 <position>10,10</position>
 <size>80,20</size>
 <endpoint>0x08</endpoint>
 <bit>3</bit>
</object>

Verilog: (or VHDL)
okWireIn startEP(...,
 .ep_addr(8’h08), .ep_data(buttonwire));

Controllability
Any prototype or experiment invariably requires some level of control. Typically, devices such as
pushbuttons, DIP switches, rotary devices, or keypads are used. With most prototype systems,
however, what is provided is nearly never enough; you can always use one more button or switch
to select a different mode. Typically, the problem is solved by rebuilding the design with a differ-
ent mode or multiplexing the use of the available inputs.

FrontPanel offers another solution. With a simple change in a couple files, new virtual buttons
and switches can be added quickly and connected to the proper points in your design.

Observability
Prototypes also require some level of observability, usually offered in the form of LEDs, hexa-
decimal displays, and LCDs or sampled externally by oscilloscopes and logic analyzers. Again,
however, there is the problem of limited resources in the typical prototype system. Only so many
LEDs and displays are present on an I/O board, so the problem is remedied by adding more I/O
boards or multiplexing the use of the current lot.

FrontPanel’s flexibility means you can display all sorts of information, in real-time, about the state
of any number of signals in your design. It’s like having an I/O board that allows you to add and
remove components at will without taking up valuable pins on the FPGA.

XML and FrontPanel Components
XML is the eXtensible Markup Language used in the latest generation of software applications
and other forms of markup (such as XHTML). It is simply a way to describe data that can be ma-
nipulated by any XML-supporting editor and in a platform-agnostic way. At its core, XML is just a
text file containing tags which correspond to nodes of a tree. Each node can have properties and
values.

FrontPanel interfaces are described using XML tags so they can be read and written with any
standard text editor. This means that adding components to your virtual “I/O board” is as easy
as adding a few lines to a text file. It also means that as FrontPanel grows in its capabilities, the

10

FrontPanel User’s Manual

www.opalkelly.com

interface descriptions will be forward (and backward) compatible. As additional functionality is
added to FrontPanel, you will be able to take advantage of it by simply adding to your current
projects.

HDL Endpoints
On the FPGA side of the interface, “Endpoints” are used to connect FrontPanel components to
signals in your design. These endpoints work just like any external pin. You simply connect the
signals you want to control or observe to the endpoint ports. Then, connect the endpoint mod-
ules to a shared bus and place a Host Interface module on that same shared bus. The Host In-
terface along with FrontPanel software and drivers take care of the rest. Signals within the FPGA
are immediately visible within FrontPanel and FrontPanel can now control any input endpoints
you’ve connected.

Additional endpoints can be added at any time simply by instantiating additional endpoint mod-
ules. The modules are designed to consume very little FPGA resources so the effect on your
design is minimal.

Application Programmer’s Interface (API)
Beyond the relatively basic instruments available within the FrontPanel Application, programmers
can communicate with their HDL endpoints from their own software. In addition to the wires and
triggers that populate a FrontPanel XML user interface, your custom applications can easily send
and retrieve bulk data at HighSpeed USB or PCI Express throughput. This functionality broad-
ens the application base of Opal Kelly integration modules to areas such as image capture, data
acquisition, FPGA co-processing, signal generation and many others.

The majority of Opal Kelly integration applications involve the use of the API in some form. Cus-
tomers use the API on Windows, Linux, and Apple (Mac) platforms. Some customers use our
DLL directly within their C or C++ application. Some use our pre-built wrappers for C#, Python,
Java, and Ruby. Others build wrappers for their own languages such as VisualBasic. Still others
use our DLL from within third-party application software such as Matlab or LabVIEW.

11

FrontPanel User’s Manual

www.opalkelly.com

Designing with FrontPanel

FrontPanel’s main purpose is to move data between your PC and your FPGA in order to provide
a convenient and effective way for you to work with the design. FrontPanel was designed to in-
terface simply and easily with new and existing FPGA designs in a way which is powerful enough
to apply to a large number of interface methods, yet simple enough to apply to a design in min-
utes. More importantly, FrontPanel attempts to make the specific implementation of the physical
interface (USB or PCI Express, depending on your device) disappear so that those details don’t
get in the way of your work.

FrontPanel introduces the concept of “endpoints” to your FPGA design. An endpoint is a bundle
of interconnect internal to your design that transports data to or from the PC in some fashion. In
many cases, the endpoint can be created from an existing signal in your design which you want
to observe in FrontPanel. In other cases, you will create an endpoint to perform a specific data
transfer.

When using the FrontPanel Application, “Components” are the corresponding PC-side interface
to an endpoint in the FPGA. Components may correspond to a single bit on an endpoint or to
several endpoints. For example, an okTriggerButton activates a single bit on a Trigger In end-
point. In contrast, a field that allows you to enter or display a number spanning more than 256
would map to multiple endpoints.

When using the FrontPanel SDK in your own application, the API methods are the corresponding
PC-side interface to an endpoint in the FPGA.

Endpoints
In FrontPanel, an endpoint is either a Wire, Trigger, or Pipe, and is either directed in or out of
your design. By way of definition, the endpoint will always be labelled from the perspective of

12

FrontPanel User’s Manual

www.opalkelly.com

the device (FPGA) so an “In” endpoint moves data into the design while an “Out” endpoint moves
data out of the design. All of the endpoints in a design are instantiated from Opal Kelly modules
and share a common connection to the Host Interface which provides the connection to the PC
through the USB or PCIe interface on the XEM board.

The figure below shows the block diagram of an example FPGA design. The okHostInterface is
instantiated once and connects to the external FPGA pins as well as a bus shared by all endpoint
HDL modules. This bus provides the communications channel for the endpoints to and from the
Host Interface.

okHostInterface

okWireIn (0x07)

okWireOut (0x24)

okTriggerOut (0x60)

okTriggerIn (0x52)

okWireIn (0x06)

okWireOut (0x23)

okPipeIn (0x80)

Status Information

Configuration

State Machine Start

State Machine Done

Load Data

Each instance of an endpoint has an associated address (shown in parentheses) so it may be
accessed independent of other endpoints. In this example, two Wire In endpoints setup the
configuration for the design and two Wire Out endpoints relay status information back to the PC.
The Trigger In endpoint is used to initiate a state machine and a Trigger Out endpoint is used
to indicate the completion of the state machine. A Pipe In endpoint is used to load data into a
memory within the design.

The three types of endpoints are summarized in the table below and described in more detail
after.

Endpoint Sync/Async Description
Wire In Asynchronous Transfers a signal state into the design.

(Examples: virtual pushbutton or switch)
Wire Out Asynchronous Transfers a signal state out of the design.

(Examples: virtual LED or hex display)
Trigger In Synchronous Generates one-shot signal destined for a particular clock.

(Example: pushbutton to start a state machine)
Trigger Out Synchronous Informs the PC that a particular event has occurred.

(Example: Done signal from a state-machine pops up a
window to the user or starts a data transfer)

Pipe In Synchronous Multi-byte synchronous transfer into the design.
(Example: Memory download, streaming data)

Pipe Out Synchronous Multi-byte synchronous transfer out of the design.
(Example: Memory upload, read results of a computation)

13

FrontPanel User’s Manual

www.opalkelly.com

Wires
A Wire is an asynchronous connection between the PC and an HDL endpoint. A Wire In is an
input to the target. A Wire Out is an output from the target.

Wires are designed to fill the position of devices such as LEDs, hexadecimal displays, pushbut-
tons, DIP switches, and so on. These devices are not synchronous to the design and they usu-
ally convey the current state of some internal signal (in the case of Wire Outs).

Wires are updated periodically using a polling mechanism. The rate of update is determined by
how fast the PC can poll the FPGA. In FrontPanel, this value is user-configurable. Even at the
highest update rate (25 millisecond period), very little bandwidth is consumed, so you should not
notice any performance penalty.

Because some FrontPanel components may convey the state of several wires, and in order to
avoid multiple transfers over the bus, all wires are captured and updated simultaneously. That is
not to say they are synchronous, but that they are all updated at the same time. Therefore, all 64
Wire Ins (or Wire Outs) are transferred together.

Triggers
Triggers are synchronous connections between the PC and an HDL endpoint. A Trigger In is
an input to the target. A Trigger Out is an output from the target. Triggers are used to initiate or
signal a single event such as the start or end of a state machine.

As an input to the HDL, a Trigger In creates a signal that is asserted for a single clock cycle. The
synchronization clock is determined by the user and the HDL module takes care of crossing the
clock domains properly.

As an output from the HDL, a Trigger Out triggers the PC when a signal’s rising edge is detected.
The “rising edge” is actually determined by the signal’s state from one clock cycle to the next and
does not detect glitches. It should be noted that because FrontPanel polls the FPGA periodically,
it can only detect independent trigger outs between polls. That is, once a Trigger Out is “set,” it
remains set until the next poll clears it.

Pipes
Pipes are synchronous connections between FrontPanel and an HDL endpoint. Unlike Triggers
which convey a single event, however, Pipes are designed to transmit a series of bytes to (or
from) the endpoint. They are most commonly used to download or upload memory contents but
may also be used to stream data to or from the device.

From the HDL point-of-view, a Pipe is always a master. That is, the PC (and therefore the HDL
module that implements the Pipe) controls the transaction for both Pipe Ins and Pipe Outs. In ad-
dition, the Pipe transactions must be performed at the endpoint’s clock rate (48 MHz for USB de-
vices, 50 or 100 MHz for PCIe devices). To reliably cross this clock boundary, a buffered (FIFO)
arrangement is suggested. The Xilinx Core Generator can produce an appropriate FIFO for you.

Although access to the Pipe is always from a slave point of view, use of Triggers provides an ef-
fective negotiation method to synchronize the transfer of blocks of data.

Pipe transfer rates will vary depending on host hardware. Our tests indicate transfer rates up
to 38 MB/s for USB 2.0 devices, 200 MB/s for PCIe devices, and over 300 MB/s for USB 3.0
devices. For more detail, see Performance Notes below.

14

FrontPanel User’s Manual

www.opalkelly.com

FrontPanel-3 Note
Firmware supporting FrontPanel 1.4.1 and earlier was limited to approximately 32 MB/s to the
FPGA and 19 MB/s from the FPGA.

Block-Throttled Pipes
Block-Throttled Pipes (or BTPipes) are very similar to “standard” Pipes with one important distinc-
tion: BTPipes provide a way for the FPGA to “throttle” transfer through the pipe at a block level.
The block size is programmable from 1 to 512 words (2 to 1024 bytes). The FPGA throttles data
through the BTPipe by asserting or deasserting a READY signal to the USB microcontroller. This
allows the FPGA to halt data transfer until data is available or ready to be processed.

BTPipes provide the same transfer rates as standard pipes, but the throttling allows them to be
used in a wider array of applications and can, generally, increase performance by reducing the
overhead that would otherwise be required to negotiate the transfer at a higher level.

Block-Throttled Pipes are treated as standard Pipes on PCI Express devices.

FrontPanel-3 Note
BTPipes are only available using firmware supporting FrontPanel-3.

Full-Speed USB Note
On full-speed USB busses, the block size is limited to 1 to 32 words (2 to 64 bytes).

Registers
The USB 3.0 implementation of FrontPanel includes a “register bridge” that provides an address-
able read/write register access point to customer HDL. The interface includes a read strobe and
write strobe as well as 32-bit address and 32-bit data ports. This allows the host to access a
16GB addressable register range in the user HDL.

Components
Components represent the other half of the interface, each connecting to an appropriate endpoint
or multiple endpoints within the design. Most components have a graphical representation within
FrontPanel such as a pushbutton, virtual LED, or numerical display. Some components, howev-
er, are hidden from view. An example of a hidden component would be one that makes a sound
in response to a Trigger Out.

Performance Notes
Opal Kelly’s FrontPanel consists of HDL modules within the FPGA, firmware on the USB
microcontroller (or PCIe bridge device), and an API on the PC that have been optimized for both
performance and a clean abstraction. Our latest FrontPanel-3 release has improved perfor-
mance significantly while offering several features that customers have requested.

Achieving the highest level of performance for your particular application requires an understand-
ing of the components being used and how certain things affect performance. By following a
few simple strategies and applying these notes, your application will be a top performer and still
benefit from the ease of use and flexible abstraction that only FrontPanel provides.

15

FrontPanel User’s Manual

www.opalkelly.com

Measured Performance
Measured performance figures in this section were taken on an Athlon 64 X2 4800+ machine
running Windows XP SP2. USB performance can vary significantly depending on a number of
factors including the motherboard make and model, specific driver versions installed, and ma-
chine load. The PipeTest application can be used as a simple benchmark.

Wires and Triggers
Wires and triggers provide the most basic form of communication between the FPGA and the
PC. From a performance perspective, wires can be read or written several hundred times per
second. All WireIns are read simultaneously, regardless of which ones you are interested in.
Similarly, all WireOuts are written simultaneously.

Activating a TriggerIn is a very fast operation and can operate at over 1,000-times per second.
Only one trigger is written per call. Updating TriggerOuts is similar to reading all WireOuts: all
TriggerOuts are read simultaneously.

Since Wire and Trigger updates are always blocking API calls, these measurements provide
some indication of the latency performance of the device.

Measured Performance (CPS = Calls Per Second)

API Call USB 3.0 (CPS) USB 2.0 (CPS) PCIe (CPS)
UpdateWireIns 5,000+ 1,000+ 4,000+
UpdateWireOuts 4,000+ 800+ 3,000+
ActivateTriggerIn 8,000+ 2,000+ 66,000+
UpdateTriggerOuts 4,000+ 800+ 3,000+

Pipes (Bulk Transfers)
Pipes are the fastest way to transmit or receive bulk data. Due to overhead, performance is best
with long transfers. Each time you perform a pipe transfer, several layers of setup are required
including those at the firmware level, API level, and operating system level. Therefore, it is best
to design around using long transfers, if possible. This generally means using large buffer sizes
on the FPGA and relying on external memory when possible.

Low-latency, high-bandwidth transfers present a special challenge to any protocol and USB (and
therefore FrontPanel) is no different. In this case, the two goals are at odds: trying to perform
many operations and still achieve high bandwidth. The problem is that the overhead associated
with setting up each transfer cuts into the time available to perform the data transfer.

It is important to note that Windows, Linux, and Mac OS X are not real-time operating systems.
They are complex systems that may have many other processes taking higher priority at any
given time. Therefore, it is often the case that simple operations (like moving a window) dramati-
cally reduce transfer bandwidth. This should be a consideration when designing the buffering for
any bandwidth-dependent application.

NOTE: Pipes in FrontPanel-3 are actually a subset of Block-Throttled Pipes where the EP_READY
signal is always asserted, thus disabling any throttling. Also, block sizes are always 1024 bytes
except for the last block which may be smaller to account for the total length of the transfer.
Block sizes are 64 bytes when the device is enumerated at full-speed.

16

FrontPanel User’s Manual

www.opalkelly.com

Measured Performance
All values in MB/s (megabytes per second). Writes measured with WriteToPipeIn. Reads mea-
sured with ReadFromPipeOut.

USB 3.0 USB 2.0 PCI Express
Transfer length Write Read Write Read Write Read
128 bytes 0.06 0.12 0.100 0.100 TBD TBD
256 bytes 0.12 0.24 0.100 0.200 TBD TBD
512 bytes 0.24 0.49 0.300 0.400 TBD TBD
1.0 kB 0.49 0.98 0.700 0.800 16.1 15.8
4.0 kB 0.98 3.91 2.8 3.1 58.7 66.6
16.0 kB 7.81 15.6 8.9 10.4 100 125
64.0 kB 31.3 55.0 20.8 23.2 100 172
256 kB 125 150 31.8 32.7 100 185
1.0 MB 252 258 36.5 36.7 100 200
4.0 MB 313 313 37.9 37.9 100 200
8.0 MB 321 318 38.2 38.1 100 200

Block-Throttled Pipes (Bulk Transfers)
Block-Throttled Pipes are available only in FrontPanel-3 implementations on USB devices. They
provide equivalent performance to the standard pipe except that the FPGA can throttle the data
transfer at the block level. The block is programmable by the user with highest performance
achieved at the largest (1,024-byte) block size.

BTPipes are an excellent way to achieve high performance with smaller buffer sizes because the
FPGA can negotiate the transfer at a low level without incurring the significant overhead of set-
ting up a new transfer for each small buffer block.

Measured Performance
All measurements taken with a 8-MB transfer length.

Block length (bytes) WriteToBlockPipeIn ReadFromBlockPipeOut
4 353 kB / s 266 kB / s
16 1.33 MB / s 1.03 MB / s
64 4.88 MB / s 3.98 MB / s
256 17.7 MB / s 14.0 MB / s
300 20.6 MB / s 13.8 MB / s
400 24.8 MB / s 16.9 MB / s
512 29.9 MB / s 24.5 MB / s
600 32.8 MB / s 21.9 MB / s
700 35.1 MB / s 22.4 MB / s
800 35.7 MB / s 23.0 MB / s
900 35.0 MB / s 22.7 MB / s
1024 38.2 MB / s 38.1 MB / s

17

FrontPanel User’s Manual

www.opalkelly.com

Isochronous Transfers?
FrontPanel does not support USB isochronous transfers. It is true that isochronous transfers can
negotiate for guaranteed bandwidth on the USB which can be very helpful when trying to build a
system that must deliver certain performance to the end-user. However, this guarantee comes
at a significant price: isochronous transfers do not provide the same level of error-detection and
error-correction that the more reliable USB bulk transfers provide. Furthermore, the guarantee is
only for bus bandwidth and says nothing about the operating system’s capabilities.

If an error occurs during the transmission of a bulk transfer, the host will request that the missing
packet be repeated. The host will also properly reconstitute the transmission so that everything
is properly sequenced.

With isochronous transfers, the bandwidth and latency requirements trump delivery accuracy.
Therefore, it is possible that some data may be lost in this pursuit. Isochronous transfers were
created for things such as multimedia content that requires on-time delivery. But if the host is too
busy or something interrupts the transfer, a few missing frames of video or a few milliseconds of
audio are considered expendable.

18

FrontPanel User’s Manual

www.opalkelly.com

19

FrontPanel User’s Manual

www.opalkelly.com

The FrontPanel application provides a turnkey method to make basic user interaction available
to your FPGA hardware. But it is not suitable for all applications, particularly those which require
further data processing on the PC side of the interface or when data transfer between the PC
and FPGA is required. In these cases, a custom software application is usually a better fit. To
this end, Opal Kelly provides the FrontPanel Application Programmer’s Interface (API), a consis-
tent (and in some cases cross-platform) interface to the underlying interface driver layer.

The FrontPanel API contains methods which communicate via the USB or PCIe bridge on the
device, but the methods have been specifically designed to interface with FPGA hardware in a
manner which is consistent with most hardware designs. The API provides methods to interface
directly with the FrontPanel HDL modules such as wires, triggers, and pipes. Because of this ab-
straction, some flexibility in the hardware interface is sacrificed for a dramatically reduced devel-
opment cycle (and learning curve!) for connecting your FPGA hardware to your custom software.

The library is written in C++ and is provided as a dynamically-linked ibrary. However, Python,
Java, and C# versions of the API are also available and can make FPGA development even
faster. Because the Python, Java, and C# APIs are generated automatically from the C++ API,
most of the methods are identical and you can use the same API reference for all languages. Fu-
ther, the methods to communicate with PCIe and USB device are either identical or very similar.

API Reference Guide
The API documentation provided in this User’s Manual gives a general overview of how the
FrontPanel API is organized and used. More detailed information about the specific calling meth-
ods and parameters can be found in the API Reference Guide.

The API Reference Guide can be found online at the following URL:
 http://library.opalkelly.com/library/FrontPanelAPI/index.html

Application Programmer’s Interface

20

FrontPanel User’s Manual

www.opalkelly.com

The Guide is also installed with your FrontPanel software (Windows only).

Samples
Often, the best way to learn how to apply a programming interface is to see examples of its ap-
plication. We encourage you to go through all of our samples to see how applications can be
built with the FrontPanel SDK. If you have problems with your own design, it is a good practice to
revisit our samples.

Organization
The FrontPanel API is provided as a dynamically-linked library that you include with your applica-
tion. The interface to the DLL is C, but a C++ wrapper is provided to make the entire DLL appear
as if it were a native C++ class in your application.

The library contains a small number of classes which you then instantiate within your code. The
details of the USB or PCIe connection between the FPGA and your PC disappear within the neat
confines of the API. These classes are shown in the table below in further detailed in what fol-
lows.

Class Description
okCPLL22150 This is a container class providing methods and structure used to configure the Cypress

22150 PLL on the XEM3001 and XEM3005. An instance of this class can be created
and used to program the on-board PLL or the class can be generated from the EEPROM
settings.

okCPLL22393 This is a container class providing methods and structure used to configure the Cypress
22393 PLL on the XEM6010, XEM3010, and XEM3050. An instance of this class can be
created and used to program the on-board PLL or the class can be generated from the
EEPROM settings.

okCFrontPanel This is the base class used to find, configure, and communicate with a FrontPanel-
enabled device. The methods in the API are organized into four main groups: Device
Interaction, Device Configuration, and FPGA Communication.

Loading the Library
The FrontPanel API is a dynamically-linked library that must be “loaded” into your application
at runtime. To do so, you simply call okFrontPanelDLL_LoadLib before you use any of the API
functionality:

// Load the FrontPanel DLL
if (FALSE == okFrontPanelDLL_LoadLib(NULL)) {
 printf(“Could not load FrontPanel DLL\n”);
 exit(-1);
}

This method takes one argument. If NULL, it will load the DLL from the application’s current path.
You can, alternatively, supply the full path and filename to the DLL to load it from a different loca-
tion.

21

FrontPanel User’s Manual

www.opalkelly.com

The okCFrontPanel Class
This class is the workhorse of the FrontPanel API. It’s methods are organized into three main
groups: Device Interaction, Device Configuration, and FPGA Communication.

In a typical application, your software will perform the following steps:

1. Create an instance of okCFrontPanel.

2. Using the Device Interaction methods, find an appropriate XEM with which to communi-
cate and open that device.

3. Configure the device PLL (for devices with an on-board PLL).

4. Download a configuration file to the FPGA using ConfigureFPGA(...).

5. Perform any application-specific communication with the FPGA using the FPGA Commu-
nication methods.

Device Interaction (USB and PCI Express)
As much as the API encapsulates the underlying details of the hardware interface, the fact
remains that the module is a USB or PCIe device and therefore must play by the rules. These
methods provide a means to iterate all attached FrontPanel devices, query certain information
about each one, and ultimately open a particular device for communication. These methods are
summarized in the following table. For brevity, arguments have been removed. Please see the
API reference manual for more details.

Method Description
GetDeviceCount Returns the number of FrontPanel devices attached to the PC. On Windows, this

method counts all devices not already open. On Linux and Mac, this counts -all-
devices. This method also queries information about each device which can be
retrieved using the GetDeviceListXXX methods below.

GetDeviceListModel Retrieves the board model of a connected device.
GetDeviceListSerial Retrieves the serial number of a connected devicce.
OpenBySerial Opens a device (with matching serial number) for communication.
GetDeviceMinorVersion Retrieves the current firmware minor version.

DEPRECATED: GetDeviceInfo replaces this method. This method will be removed
in a future version of FrontPanel.

GetDeviceMajorVersion Retrieves the current firmware major version.
DEPRECATED: GetDeviceInfo replaces this method. This method will be removed
in a future version of FrontPanel.

GetSerialNumber Returns a 10-digit serial number unique to each device. This serial number may be
used to select a specific device among those available. The serial number is set at
the factory and is not user-modifiable.
DEPRECATED: GetDeviceInfo replaces this method. This method will be removed
in a future version of FrontPanel.

22

FrontPanel User’s Manual

www.opalkelly.com

Device Configuration
Once an available device has been opened, these methods allow you to configure it’s available
features such as PLL settings and EEPROM parameters and to download configuration data to
the FPGA.

Method Description
GetDeviceID Returns a device identification string stored in the device. Unlike the se-

rial number, this string may be changed by the user using the API or the
FrontPanel application. It is not guaranteed to be unique.
DEPRECATED: GetDeviceInfo replaces this method. This method will be
removed in a future version of FrontPanel.

SetDeviceID Allows the user to set the device ID.
LoadDefaultPLLConfiguration Configures the PLL with settings stored in EEPROM.
GetPLLxxxConfiguration Retrieves the current on-board PLL configuration. (xxx is either 22150 or

22393)
SetPLLxxxConfiguration Sets the on-board PLL to a given configuration. (xxx is either 22150 or

22393)
GetEepromPLLxxxConfiguration Retrieves the PLL configuration stored in the on-board EEPROM. (xxx is

either 22150 or 22393)
SetEepromPLLxxxConfiguration Programs the on-board EEPROM with a PLL configuration for later retrieval.

(xxx is either 22150 or 22393)
ConfigureFPGA Downloads a Xilinx configuration bitfile to the FPGA.
ConfigureFPGAFromMemory Similar to above, but with the configuration file contents in memory.
ConfigureFPGAWithReset (USB 3.0 only) Downloads a Xilinx configuration bitfile to the FPGA and pro-

vides a reset profile to perform after configuration.
ConfigureFPGAFromMemory-
WithReset

(USB 3.0 only) Similar to above, but with the configuration file contents in
memory.

FlashEraseSector (USB 3.0 only) Erases a single sector in user flash.
FlashWrite (USB 3.0 only) Writes data to user flash.
FlashRead (USB 3.0 only) Reads data from user flash.

FPGA Communication
Once the FPGA has been configured, communication between the application and the FPGA
hardware is done through these methods. The FPGA is connected directly to the bridge device
(USB microcontroller or PCIe bridge) on the XEM. These methods communicate through that
connection and require that an instance of the HDL module okHostInterface be installed in the
FPGA configuration.

A brief description of the API methods is in the table below. The way the API and FrontPanel
HDL modules communicate is described in more detail later.

Method Description
IsFrontPanelEnabled Checks to see that an instance of the okHostInterface is installed in the FPGA con-

figuration.
IsFrontPanel3Supported Returns true if the firmware on the device supports FrontPanel-3.

23

FrontPanel User’s Manual

www.opalkelly.com

Method Description
ResetFPGA Sends a reset signal through the host interface. This is used to reset the host inter-

face or any endpoints. It can also be used to reset user hardware.
UpdateWireIns Updates all wire in values (to FPGA) simultaneously with the values held internally to

the API.
UpdateWireOuts Simultaneously retrieves all wire out values (from FPGA) and stores the values inter-

nally.
UpdateTriggerOuts Retrieves all trigger out values (from FPGA) and records which endpoints have trig-

gered since the last query.
SetWireInValue Sets a wire in endpoint value. Requires a subsequent call to UpdateWireIns.
GetWireOutValue Retrieves a wire out endpoint value. Requires a previous call to UpdateWireOuts.
ActivateTriggerIn Activates a given trigger in endpoint.
IsTriggered Returns true if a particular trigger out endpoint has been triggered since a previous

call to UpdateTriggerOuts.
WriteToPipeIn Writes data (byte array) to a pipe in.
ReadFromPipeOut Reads data (byte array) from a pipe out.
WriteToBlockPipeIn Writes data to a block-throttled pipe in.
ReadFromBlockPipeOut Reads data from a block-throttled pipe out.
WriteRegister (USB 3.0 only) Performs a single write transaction on the Register Bridge.
ReadRegister (USB 3.0 only) Performs a single read transaction on the Register Bridge.
WriteRegisters (USB 3.0 only) Performs multiple write transactions on the Register Bridge.
ReadRegisters (USB 3.0 only) Performs multiple read transactions on the Register Bridge.

Communicating with Multiple Devices
In most cases, your software will communicate with a single attached device attached. However,
some applications require simultaneous communication with two or more devices. Multiple-de-
vice communication is fully supported by the driver and API but will require special consideration
when initializing the communication.

Querying Attached Devices
You can call the method GetDeviceCount() to determine the number of supported devices at-
tached to the bus before opening a specific a specific device. The GetDeviceCount() method
also queries the device serial numbers and board types of all the attached devices. This infor-
mation can then be accessed by calling the methods GetDeviceListSerial() and GetDeviceList-
Model(), respectively.

Platform-Specific Behavior
Windows, Linux, and Mac OS X behave slightly differently with regards to device enumeration
using the FrontPanel API. Under Windows, if any process opens a device (OpenBySerial), that
device will no longer be listed on subsequent calls to GetDeviceCount() from a different process.
On the other hand, Linux and Mac OS X will allow the opened device to be enumerated. It is up
to the user to assure that two processes are not communicating with the same device as this can
lead to data corruption or other failures.

24

FrontPanel User’s Manual

www.opalkelly.com

Connecting to a Specific Device
It is expected that you would identify a specific board using the serial number (factory-assigned
and not user-mutable) or using the device ID string (user configurable via FrontPanel). A typical
process for opening multiple devices would then be:

1. Create two instances (call them x and y) of the okCFrontPanel.

2. Call x.GetDeviceCount() to verify that two boards are connected and to query the serial
numbers and other device information.

3. Call serX = x.GetDeviceListSerial(0) to get the first device’s serial number.

4. Call serY = x.GetDeviceListSerial(1) to get the second device’s serial number.

5. Call x.OpenBySerial(serX) to open the first device.

6. Call y.OpenBySerial(serY) to open the second device.

Using this procedure, you would then have two instances which point to the two devices in your
system. They have also been clearly associated with the specific hardware you specified, so
there is no ambiguity.

PLL Configuration
Each XEM product has a programmable PLL that can be configured through the API. In many
cases, your application will require a single pre-set PLL configuration which can be stored to the
on-board EEPROM (not the PLL’s EEPROM). In other cases, you may want to configure the PLL
from your software.

Preset PLL Configuration
With a preset PLL configuration, you setup the PLL parameters using the FrontPanel Application.
You then store these parameters to the on-board EEPROM for future recall. When you startup
your application (and typically before FPGA configuration), you can then configure the PLL from
this stored preset using a single command:

xem->LoadDefaultPLLConfiguration();

Software PLL Configuration
You can also use the PLL classes to configure PLL parameters and then load them into the PLL.
This allows dynamic PLL configuration from your own software. Software PLL configuration is a
bit more complicated and requires more intimate knowledge of how the PLL parameters interop-
erate. Please refer to the corresponding PLL datasheet for details on the PLL parameters spe-
cific to that PLL. Then refer to the API Reference Guide for the methods available to set these
parameters.

System Flash (USB 3.0)
Some FrontPanel devices have a non-volatile Flash memory attached to the USB microcontroller
that is used for firmware and setting storage as well as user storage. The FrontPanel API
includes methods for working with this Flash. The available storage and layout of the Flash is
device-dependent. Information for each device is available in the User’s Manual for that device.

25

FrontPanel User’s Manual

www.opalkelly.com

API Communication
The three endpoint types (Wire, Trigger, Pipe) provide a means by which the PC and FPGA
communicate. Each type is suited to a specific type of data transfer and has its own associated
usage and rules.

Blocking Commands
All API methods are blocking commands. This means that the call completes before it returns
to the caller (your software). Therefore, you can be assured that if you perform two consecutive
API calls that update registers on the FPGA, the updates from the first call are complete prior to
starting the second call.

Wires
Recall that a wire is used to communicate asynchronous signal state between the host (PC) and
the target (FPGA). The okHostInterface supports up to 32 Wire In endpoints and 32 Wire Out
endpoints connected to it. To save bandwidth, all Wire In or Wire Out endpoints are updated at
the same time and written or read by the host in one block.

All Wire In (to FPGA) endpoints are updated by the host at the same time with the call Update-
WireIns(). Prior to this call, the application sets new Wire In values using the API method Set-
WireInValue(). The SetWireInValue() simply updates the wire values in a data structure internal
to the API. UpdateWireIns() then transfers these values to the FPGA.

All Wire Out (from FPGA) endpoints are likewise read by the host at the same time with a call to
UpdateWireOuts(). This call reads all 32 Wire Out endpoints and stores their values in an inter-
nal data structure. The specific endpoint values can then be read out using GetWireOutValue().

Note: UpdateWireIns() and UpdateWireOuts() also latch all wire endpoint data at the same time.
Therefore, the data available on Wire Out endpoints are all captured synchronously (with the tar-
get interface clock). Similarly, the data availble to Wire In endpoints is all latched synchronously
with the target interface clock.

Endpoint Width
Wires are 16-bits wide on USB 2.0 devices, 32-bits on USB 3.0 devices, and 32-bits on PCI Ex-
press devices. The API interface width is 32 bits. The upper bits are ignored if not supported.

Triggers
Triggers are used to communicate a singular event between the host and target. A Trigger In
provides a way for the host to convey a “one-shot” on an arbitrary FPGA clock. A Trigger Out
provides a way for the FPGA to signal the host with a “one-shot” or other single-event indicator.

Triggers are read and updated in a manner similar to Wires. All Trigger Ins are transferred to the
FPGA at the same time and all Trigger Outs are transferred from the FPGA at the same time.

Trigger Out information is read from the FPGA using the call UpdateTriggerOuts(). Subsequent
calls to IsTriggered() then return ‘true’ if the trigger has been activated since the last call to Upda-
teTriggerOuts().

Endpoint Width
Triggers are 16-bits wide on USB 2.0 devices, 32-bits on USB 3.0 devices, and 32-bits on PCI
Express devices. The API interface width is 32 bits. The upper bits are ignored if not supported.

26

FrontPanel User’s Manual

www.opalkelly.com

Pipes
Pipe communication is the synchronous communication of one or more bytes of data. In both
Pipe In and Pipe Out cases, the host is the master. Therefore, the FPGA must be able to accept
(or provide) data on any time. Wires, Triggers, and FIFOs can make things a little more nego-
tiable.

When data is written by the host to a Pipe In endpoint using WriteToPipeIn(...), the device driver
will packetize the data as necessary for the underlying protocol. Once the transfer has started, it
will continue to completion, so the FPGA must be prepared to accept all of the data.

When data is read by the host from a Pipe Out endpoint using ReadFromPipeOut(...), the device
driver will again packetize the data as necessary. The transfer will proceed from start to comple-
tion, so the FPGA must be prepared to provide data to the Pipe Out as requested.

Byte Order (USB 2.0)
Pipe data is transferred over the USB in 8-bit words but transferred to the FPGA in 16-bit words.
Therefore, on the FPGA side (HDL), the Pipe interface has a 16-bit word width but on the PC
side (API), the Pipe interface has an 8-bit word width.

When writing to Pipe Ins, the first byte written is transferred over the lower order bits of the data
bus (7:0). The second byte written is transferred over the higher order bits of the data bus (15:8).
Similarly, when reading from Pipe Outs, the lower order bits are the first byte read and the higher
order bits are the second byte read.

Byte Order (USB 3.0)
Pipe data is transferred over the USB in 8-bit words but transferred to the FPGA in 32-bit words.
Therefore, on the FPGA side (HDL), the Pipe interface has a 32-bit word width but on the PC
side (API), the Pipe interface has an 8-bit word width.

When writing to Pipe Ins, the first byte written is transferred over the lower order bits of the data
bus (7:0). The second byte written is transferred over next higher order bits of the data bus (15:8)
and so on. Similarly, when reading from Pipe Outs, the lower order bits are the first byte read
and the next higher order bits are the second byte read.

Byte Order (PCI Express)
The HDL pipe endpoints for PCI Express designs are 64-bits wide. The API methods are 8 bits
wide for both USB and PCI Express. For PCI Express devices, pipe transfers must be in mul-
tiples of 8 bytes.

Block-Throttled Pipes
Block-Throttled Pipe communication is identical to Pipe communication with the additional speci-
fication of a block size. The FPGA sends (or receives) data in blocks sized 2, 4, 6, ..., 1024 as
specified by the arguments to the call. Block sizes are restricted to 64 bytes or less when using
the device at full-speed.

Because the FPGA has the opportunity to stall the transfer by deasserting EP_READY, the call
may fail with a timeout.

27

FrontPanel User’s Manual

www.opalkelly.com

Registers (USB 3.0)
The RegisterBridge HDL module provides a read / write interface with a 32-bit address range and
32-bit data width. Any address within the range may be read or written. Reads and writes through
the API are performed on the hardware in the order provided by the caller and each is performed
only after the previous has completed.

Reset Profiles (USB 3.0 Only)
A FrontPanel Reset Profile defines a structured approach to setting up your FPGA design after
configuration has completed. The intent is to simplify initialization of your design by making sure
certain inputs (such as WireIns or Registers) are setup prior to deasserting RESET. Including a
Reset Profile, the FPGA configuration process includes the steps illustrated below.

Con�guration
Transfer

Pause
{DoneWait} µs

Pause
{ResetWait} µs

Pause
{RegisterWait} µs

Deassert RESET

Con�guration
Complete

Initiate Con�guration

FPGA Accepts Con�guration
(DONE goes high)

Setup WireIns

Setup Registers

Activate TriggerIns

1. FPGA configuration is initiated, clearing the present configuration memory.

2. RESET is asserted.

3. Configuration data is transferred to the FPGA.

4. Upon valid configuration, the FPGA indicates completion to the firmware. For Xilinx FP-
GAs, this corresponds to DONE going high.

5. Pause for {DoneWait}, then WireIns are set to predefined values.

6. RegisterIns are set to predifined values.

7. Pause for {RegisterWait}, then RESET is deasserted.

8. Pause for {ResetWait}, then predefined TriggerIns are activated.

9. Configuration with Reset is complete.

The reset process is controlled using the Reset Profile defined with the okTFPGAResetProfile
structure. FrontPanel API methods that accept a Reset Profile are described in the following
table.

Method Description
ConfigureFPGAWithReset Configure the FPGA from a file and perform a Reset Profile after configura-

tion.
ConfigureFPGAFromMemory-
WithReset

Configure the FPGA from memory and perform a Reset Profile after configu-
ration

28

FrontPanel User’s Manual

www.opalkelly.com

Method Description
GetFPGABootResetProfile Retrieves the Reset Profile stored in Flash memory that is used for power-on

configuration of the FPGA.
GetFPGAJTAGResetProfile Retrieves the Reset Profile stored in Flash memory that is used for JTAG

configuration of the FPGA.
SetFPGABootResetProfile Sets the Reset Profile stored in Flash memory that is to be used for power-on

configuration of the FPGA.
SetFPGAJTAGResetProfile Sets the Reset Profile stored in Flash memory that is to be used for JTAG

configuration of the FPGA.
typedef struct okFPGAResetRegisterEntry {
 UINT32 address;
 UINT32 data;
} okTFPGAResetRegisterEntry;

typedef struct okFPGAResetTriggerEntry {
 UINT32 address;
 UINT32 mask;
} okTFPGAResetTriggerEntry;

typedef struct okFPGAResetProfile {
 UINT32 magic;
 UINT32 configFileLocation;
 UINT32 configFileLength;
 UINT32 doneWaitUS;
 UINT32 resetWaitUS;
 UINT32 registerWaitUS;
 UINT32 padBytes1[28];
 UINT32 wireInValues[32];
 UINT32 registerEntryCount;
 okTFPGAResetRegisterEntry registerEntries[256];
 UINT32 triggerEntryCount;
 okTFPGAResetTriggerEntry triggerEntries[32];
 UINT8 padBytes2[1520];
} okTFPGAResetProfile;

Device Sensors (USB 3.0 Only)
The Device Sensors API provides programmer access to sensing capabilities built into some
Opal Kelly integration modules. These sending capabilities provide real-time measurement of
select device voltages, currents, and temperatures for monitoring purposes. Device Sensors are
device-specific and are listed in the corresponding device User’s Manual if this feature is avail-
able.

Important portions of the API are shown in the following snippet.

29

FrontPanel User’s Manual

www.opalkelly.com

// Query all device sensors and retrieve the collection.
ErrorCode okCFrontPanel::GetDeviceSensors(okCDeviceSensors& sensors) const;

// Get the number of sensors.
int okCDeviceSensors::GetSensorCount() const;

// Get a particular sensor.
okTDeviceSensor okCDeviceSensors::GetSensor(int index) const;

// Device Sensor structure.
typedef struct okDeviceSensor {
 int id;
 okEDeviceSensorType type;
 char name[OK_MAX_DEVICE_SENSOR_NAME_LENGTH];
 char description[OK_MAX_DEVICE_SENSOR_DESCRIPTION_LENGTH];
 double min;
 double max;
 double step;
 double value;
} okTDeviceSensor;

GetDeviceSensors API
The device firmware manages an internal store of all device sensors and queries them periodi-
cally. The values of this store are transferred to the host using this API. Note that the update pe-
riod is not programmable or known to the API but is approximately once every second or so. The
sensor collection is loaded into an instance of okCDeviceSensors which is returned by this API.
Accessor methods of this class then provide the count and query of each okTDeviceSensor.

The typical use case for Device Sensors is as follows:

1. Call okCFrontPanel::GetDeviceSensors to retrieve the sensor collection.

2. Call okCDeviceSensors::GetSensorCount to retrieve the collection count.

3. Iterate through the sensor count, calling GetSensor to print sensor values or search for a
particular sensor name.

Device Sensor Parameters
Each sensor has several parameters that may be queried via the API. During each read of the
Device Sensors, these parameters are placed into a structure okTDeviceSensor.

• id - Sensor ID (reserved for future use).

• type - Sensor type from the table below.

• name - String name of the sensor.

• description - Brief string describing the sensor measurement.

• min - Minimum measurement value.

• max - Maximum measurement value.

• step - Value step size attributable to the measurement resolution.

• value - Value of the measurement.

30

FrontPanel User’s Manual

www.opalkelly.com

okEDeviceSensorType Description
okDEVICESENSOR_INVALID Invalid sensor
okDEVICESENSOR_BOOL Boolean (0=false, 1=true)
okDEVICESENSOR_INTEGER Integer value
okDEVICESENSOR_FLOAT Floating point value
okDEVICESENSOR_VOLTAGE Voltage with corresponding minimum, maximum, and step size
okDEVICESENSOR_CURRENT Current with corresponding minimum, maximum, and step size
okDEVICESENSOR_TEMPERATURE Temperature with corresponding minimum, maximum, and step size
okDEVICESENSOR_FAN_RPM Fan RPM (revolutions per minute)

Device Settings (USB 3.0 Only)
The Device Settings API provides programmer access to persistent and non-persistent key /
value pairs managed by the device firmware. Available Device Settings are device-specific and
supported settings are listed in the corresponding device User’s Manual.

Important portions of the API are shown in the following snippet.

// Retrieve the Device Settings module for the device.
ErrorCode okCFrontPanel::GetDeviceSettings(okCDeviceSensors& sensors);

// Get a list of setting keys.
int okCDeviceSettings::List(std::vector<str::string>& keys);

// Get / Set an integer setting.
okCDeviceSetting::GetInt(const std::string& key, UINT32 *value);
okCDeviceSetting::SetInt(const std::string& key, UINT32 value);

// Get / Set an string setting.
okCDeviceSetting::GetString(const std::string& key, std::string *value);
okCDeviceSetting::SetString(const std::string& key, std::string value);

// Delete a setting
okCDeviceSetting::Delete(const std::string& key);

// Save settings to persistent storage.
okCDeviceSetting::Save();

Persistent Settings
Persistent settings are stored in non-volatile memory (NVM) on the device. These settings are
used to control startup behavior as well as runtime operation. Because they are stored in NVM,
the setting persists when the device is powered off.

There is a separate API (okCDeviceSetting::Save) which must be called to commit settings to
NVM. Settings are only changed in volatile memory until this method is called.

Non-Persistent Settings
Non-persistent settings are runtime settings that are not necessarily stored in NVM. These set-
tings usually control or monitor runtime operation. For example, controlling an on-device fan
would be a runtime setting and changes to that setting affect device behavior immediately.

31

FrontPanel User’s Manual

www.opalkelly.com

Note that a particular setting may be both Persistent and Non-Persistent. The determination is
device-specific and the implication of a setting that is both Persistent and Non-Persistent is that
changing the setting affects device behavior immediately and is also used during device startup
to affect behavior at that time. For example, a fan setting that is both persistent and non-persis-
tent will modify the fan operation immediately and, if written to NVM, the device will restore that
operation on boot.

Setting Store
The setting store is a block of NVM in System Flash that has been set aside for persistent set-
ting storage. This block is read at device startup and is written upon calling the API method
okCDeviceSetting::Save.

FrontPanel API Example Usage
Below is a short code snippet that illustrates how the API might be used in a C++ application.
More useful and detailed examples can be found in the Samples folder of the FrontPanel instal-
lation.

if (FALSE == okFrontPanelDLL_LoadLib(NULL)) {
 printf(“Could not load FrontPanel DLL\n”);
 exit(-1);
}

okCFrontPanel *dev = new okCFrontPanel();
dev->OpenBySerial();
dev->LoadDefaultPLLConfiguration();
dev->ConfigureFPGA(“mybitfile.bit”);

// Set a value on WireIn endpoint 0x00.
dev->SetWireInValue(0x00, 0x37);
dev->UpdateWireIns();

// Activate TriggerIn 0x40:0 (clears address pointers).
dev->ActivateTriggerIn(0x40, 0);

// Send 1024 bytes to PipeIn 0x80.
dev->WriteToPipeIn(0x80, 1024, buf);
// Read 1024 from PipeOut 0xA0.
dev->ReadFromPipeOut(0xA0, 1024, buf);

// Read the result from WireOut endpoint 0x20.
dev->UpdateWireOuts();
result = dev->GetWireOutValue(0x20);

Regarding Device Ownership (Multithread or Multiprocess Access)
In general, once an instance of okCFrontPanel has been opened, that instance “owns” the de-
vice. That means that, while the API will allow you to create another instance and communicate
with the same device, there are likely going to be problems with doing so.

In situations where you must have multiple threads or processes communicating with the same
device, it is better to have a single owner of the device instance and route all calls through that
owner.

The exception to this is GetDeviceCount() and the associated calls under Linux and Mac OS X.
(This exception does not apply to Windows.) You can call this method at any time (even before
opening a device) to determine the number of attached FrontPanel devices and retrieve their

32

FrontPanel User’s Manual

www.opalkelly.com

model numbers, and serial numbers. You may not retrieve the Device ID string without opening
the device and that implies “owning” the device.

32-bit and 64-bit Architectures
The FrontPanel API is distributed for 32-bit and 64-bit architectures on Windows and Linux. If
you have a 32-bit version of Windows installed, you will only need the 32-bit API since Win-
dows/32 cannot run applications build for 64-bit architectures.

If you have a 64-bit version of Windows installed, the OS can run both 32-bit and 64-bit applica-
tions. The FrontPanel API you choose should match the architecture of the application you are
using. Typically, 32-bit applications are installed in “Program Files (x86)” and 64-bit applica-
tions are installed in “Program Files”.

Windows (32-bit) Windows (64-bit)
32-bit Application 32-bit API 32-bit API
64-bit Application - 64-bit API

Windows DLL Usage
The Microsoft Visual C++ 2013 Redistributable is required to use the FrontPanel DLL and the
wrapped APIs because the DLLs are compiled against Microsoft libraries. Your software installa-
tion package should install the appropriate redistributable (32-bit and 64-bit versions are avail-
able). The redistributable package is available for free from Microsoft’s website.

Note that the redistributable for the corresponding architecture of the DLL needs to be installed,
regardless of the Windows OS architecture. Therefore, if you’re using the 32-bit version of Python
on a 64-bit version of the Windows OS, you will need to have the 32-bit version of the redistribut-
able installed.

http://www.microsoft.com/en-us/download/details.aspx?id=40784

Wrapped APIs
The FrontPanel API is available in C#, Java, Ruby, and Python. These APIs are similar to the
native (C/C++) API, but have a few peculiarities. The best place to start is our DESTester sample
that is available on in all of the wrapped APIs.

Getters and Setters
Getters and Setters are the methods used to access member variables in a structure (such as
okTDeviceInfo). Differences exist depending on the specific language conventions. Below are
some examples of the getters and setters. In particular, the Java API uses functions to access
member variables that are prefixed with “get” or “set”.

33

FrontPanel User’s Manual

www.opalkelly.com

// C/C++
printf(devInfo.serialNumber);
regEntry.address = 0x00001234;

// C#
System.Console.Write(devInfo.serialNumber);
regEntry.address = 0x00001234;

// Java
System.out.println(devInfo.getSerialNumber());
regEntry.setAddress = 0x00001234;

Python
print(devInfo.serialNumber)
regEntry.address = 0x00001234

Ruby
puts devInfo.serialNumber
regEntry.address = 0x00001234

Data Types
Whenever possible, the corresponding data types in the language have been mapped transpar-
ently to the native API. There are a few exceptions to this that should be noted, however.

Java : Long Instead of Unsigned Int
The Java language does not have unsigned types. Therefore, when using the 32-bit unsigned int
for methods such as GetWireOutValue and SetWireInValue, it is best to use Java longs. Other-
wise, the most significant bit will map and sign-extend incorrectly.

// Java
device.SetWireInValue(0x00, 0x876543210L); // Use long constants
0x87654321L == device.GetWireOutValue(0x20); // Expect results as longs

Byte Arrays
Byte arrays are used when bulk data is handed to or received from the API. Examples include
the Pipe transfer APIs and the Flash memory read/write APIs. Byte arrays are handled differ-
ently in different languages.

// C/C++
unsigned char *data = new unsigned char[deviceInfo.flashSystem.sectorSize];
device.FlashWrite(address, length, data);

// C#
byte[] data = new byte[(int)deviceInfo.flashSystem.sectorSize];
device.FlashWrite(address, length, data);

// Java
byte[] data = new byte[(int)deviceInfo.getFlashSystem().getSectorSize()];
device.FlashWrite(address, length, data);

Python
data = bytearray(deviceInfo.flashSystem.sectorSize)
device.FlashWrite(data)

34

FrontPanel User’s Manual

www.opalkelly.com

Python API
The Python API is built as an import library to be used with the Python interpreted programming
language. Python is a powerful extensible language with a clear syntax, making it ripe for the
FrontPanel API add-on. The Python API is built using the C++ API as a foundation, so the simi-
larities are pervasive.

The Python API is compiled for each supported platform into a shared object file (DLL under
Windows or .so under Linux) and distributed along with a couple Python files that define the
package. The Python interpreter can access the API methods through this shared object and
Python package.

Required Files
The Python API distribution includes four files as listed below:

● __init__.py

● __version__.py

● ok.py

● _ok.pyd (Windows, architecture-specific for 32-bit/64-bit)

● _ok.so (Linux, Mac OS X, architecture-specific)

These four files need to be in the current working directory where Python is started. Alterna-
tively, they may be added to the Python site-packages directory within your Python distribution.
Refer to the Python manual to see how this is done.

Example Usage
Using the API from Python is quite easy and can be done scripted or interactively. Below is an
example interaction with the Counters sample project.

>>> import ok
>>> dev = ok.okCFrontPanel()
>>> pll = ok.okCPLL22150()
>>> dev.GetEepromPLL22150Configuration(pll)
1
>>> dev.SetPLL22150Configuration(pll)
1
>>> pll.GetOutputFrequency(0)
100.0
>>> dev.ConfigureFPGA(‘c:\counters.bit’)
1
>>> dev.ActivateTriggerIn(0x40,0)
1
>>>

Java API
The Java API is built as an extension library to be used with Sun’s compiled Java language. It
it built on top of the JNI (Java Native Interface). The API is distributed as a shared library and a
Java archive (JAR file).

Required Files
There are only two required files for the Java API: the shared library and the Java archive:

35

FrontPanel User’s Manual

www.opalkelly.com

● okjFrontPanel.dll (Windows, architecture-specific for 32-bit/64-bit)

● okjFrontPanel.so (Linux, architecture-specific for 32-bit/64-bit)

● libokjFrontPanel.jnilib (Mac OS X)

● okjFrontPanel.jar

Under Windows, you can keep the DLL in the directory where you run java. Under Linux, the
shared object should be placed within your java.class.path. For example, under the SuSE 9.2
Linux distribution, you would copy the file to: /usr/lib/jre/lib/i386.

Example Usage
Within a Java source that uses the Java FrontPanel API, you need to import the FrontPanel
classes using the following line:

import com.opalkelly.frontpanel.*;

To actually load the FrontPanel library into Java, you will also need to make the following System
call before using any FrontPanel API objects:

System.loadLibrary(“okjFrontPanel”);

Compiling a Java application for use with the Java API can be done on the command line using
javac with the -classpath argument to specify the Java API JAR as shown below.

javac -classpath okjFrontPanel.jar MyClass.java

Likewise, when running the application, you need to add the Java API JAR to the classpath:

java -classpath .;okjFrontPanel.jar MyClass # Windows
java -classpath .:okjFrontPanel.jar MyClass # Mac & Linux

A thorough example of the Java API is included in the DESTester application. Shown below is
the Python example above transformed into Java.

import com.opalkelly.frontpanel.*;
public class JavaAPITest {
 public void TestMethod() {
 dev = new okCFrontPanel();
 pll = new okCPLL22150();
 dev.GetEepromPLL22150Configuration(pll);
 dev.SetPLL22150Configuration(pll);
 System.out.println(“PLL Output: “ + pll.GetOutputFrequency(0) + “ MHz”);

 dev.ConfigureFPGA(“c:/counters.bit”);
 dev.ActivateTriggerIn((short)0x40, (short)0);
 }
}

C# API
The C# API is built as an extension library using the Platform Invoke (PInvoke) capability of .NET.

36

FrontPanel User’s Manual

www.opalkelly.com

Required Files
There are only two required files for the C# API: the shared library and the C# library:

● libFrontPanel-pinv.dll - Shared library, architecture-specific for 32-bit/64-bit

● libFrontPanel-csharp.dll - C# library

The C# library must be added to your C# project as a Reference. The shared library must be
placed in the runtime directory of your application.

Example Usage
Within your C# source, you will need to specify the namespace for the FrontPanel API:

using OpalKelly.FrontPanel;

At runtime, the FrontPanel API classes will automatically load the shared library as necessary.

A good example of the C# API is included in the DESTester application. Shown below is a brief
code snippet:

using OpalKelly.FrontPanel;
class CsharpAPITest {
 public void TestMethod() {
 dev = new okCFrontPanel();
 dev.OpenBySerial(““);
 dev.LoadDefaultPLLConfiguration();
 dev.ConfigureFPGA(“c:/counters.bit”);
 dev.ActivateTriggerIn((short)0x40, (short)0);
 }
}

FrontPanel DLL
On the Windows platform, a dynamically-linked library (DLL) is available. On other platforms (Li-
nux, Mac OS X, and QNX), this library is known as a shared-object. We will use the terms DLL
and shared-object to mean the same. This DLL makes it possible to call the FrontPanel API from
other programming languages (such as C, C++, VisualBasic) as well as from many third-party
software applications such as LabVIEW and Matlab. It also means that you don’t need to have a
precompiled API library specific to your compiler.

The FrontPanel DLL is provided as three files listed in the table below:

Filename Description
okFrontPanel.dll
libokFrontPanel.so
libokFrontPanel.dylib

The FrontPanel DLL binary (Windows, Linux, Mac, respectively).
This file needs to be located with your application executable or, for
third-party software, in the appropriate DLL location.

okFrontPanel.lib Referred to as an “import library,” this file contains references
necessary to call the functions in the DLL. This is typically required
only for C and C++ applications and is statically linked to your ap-
plication at compile time.

okFrontPanelDLL.h This header file contains the FrontPanel DLL entrypoints corre-
sponding to the functions in the import library.

37

FrontPanel User’s Manual

www.opalkelly.com

In most cases, each class method has a corresponding DLL entrypoint. This makes it easy to
refer to the standard API documentation for calling information. One notable difference is that
most DLL entrypoints require a pointer argument. This pointer is actually the pointer to the al-
located C++ class object. Note, however, that this object is allocated and deallocated using DLL
entrypoints and therefore the DLL does NOT require C++ and can be used in any C application.

QNX Usage
QNX is a real-time operating system that runs on a number of architectures, including Intel x86.
From a build environment perspective, it is very similar to Linux and other UNIX-like operating
systems. Our samples should build and run under QNX without modification. The typical ap-
plication startup procedure is to create a new QNX project from within the Momentix IDE using
QNX templates, then copy the source files from one of the samples into that project. You will
also need to include the shared object file with your compiled binary.

Under the build settings (Makefile), you will need to change the LDFLAGS setting to include the
QNX USB library as shown below.

LDFLAGS+=-lang-c++ -lusbdi

Memory Allocation
Due to the way the QNX USB stack operates, you must allocate memory differently if it is going
to be used for any FrontPanel Pipe transfers. See the code example below as reference. Note
that this only applies to buffers used for pipe transfers.

#include <sys/usbdi.h>

pBuffer = new unsigned char[65536]; // Typical C++ allocation
pBuffer = (unsigned char *)usbd_alloc(65536); // QNX pipe buffer allocation

delete [] pBuffer; // Typical C++ deallocation of a buffer
usbd_free(pBuffer); // QNX deallocation of pipe buffers

Example Usage (C/C++)
When using the DLL in a compiled C/C++ application, you will need to link the okFrontPanel.lib
file with your application. This file contains references necessary to call the functions in the DLL.
You will also need to include the file okFrontPanelDLL.h in each source file that calls the DLL.

Initialization
Before calling functions within the DLL, you need to load the DLL library. This is done with the
following call:

// Initialize the DLL and load all entrypoints.
if (FALSE == okFrontPanelDLL_LoadLib()) {
 printf(“ERROR: FrontPanel DLL could not be initialized.\n”);
}

There are a few reasons this call (LoadLib) may fail:

• The DLL itself must be where the software thinks it is. If you do not pass a full path to
the function, it will assume it is in the present working directory of the application. Hint:
This is not necessarily the location of the executable!

38

FrontPanel User’s Manual

www.opalkelly.com

• The DLL must be the same architecture (32-bit or 64-bit) as the application. If you’re
building a 64-bit application, use the 64-bit DLL. If you’re building a 32-bit application,
use the 32-bit DLL.

• The DLL requires the Microsoft Visual C++ 2010 Redistributable to be installed on the
target machine. Be sure to install the redistributable that matches the architecture of the
DLL.

Constructing and Destructing Objects
The FrontPanel API is an object-oriented library but the DLL is strictly C-style. Therefore, meth-
ods have been provided in the DLL for creating and destroying the objects such as okCPLL22150
and okCFrontPanel. An object must be created before its methods can be called. An object
should also be destructed when you are done using it.

okFRONTPANEL_HANDLE dev;
dev = okFrontPanel_Construct();
...
 // Use the ‘dev’ object.
...
okFrontPanel_Destruct(dev);

Calling Methods
Each DLL method that acts on an object has an additional required argument that indicates which
object is being acted upon. In C++, this additional argument is implied by the object-oriented
nature of the language. In the DLL this argument must be explicitly provided.

C++ Wrapper
Also included in the okFrontPanel.h file is a C++ wrapper for the DLL. This provides a full C++
object class so that you do not have to call the C-style DLL methods from your C++ application.
Most of the samples are written using this C++ wrapper.

39

FrontPanel User’s Manual

www.opalkelly.com

okFRONTPANEL_HANDLE dev;
okPLL22150_HANDLE pll;

// Construct device and PLL objects.
dev = okFrontPanel_Construct();
pll = okPLL22150_Construct();

// Setup the PLL.
okPLL22150_SetVCOParameters(pll, 400, 48);
okPLL22150_SetDiv1(pll, DivSrc_VCO, 8);
okPLL22150_SetOutputSource(pll, 0, ClkSrc_Div1ByN);
okPLL22150_SetOutputEnable(pll, 0, true);

// Configure the XEM PLL.
okFrontPanel_OpenBySerial(dev, NULL);
okFrontPanel_SetPLLConfiguration(dev, pll);

// Finished with the PLL.
okPLL22150_Destruct(pll);

...
 // Use the ‘dev’ object.
...

okFrontPanel_Destruct(dev);

Example Usage (Matlab)
Matlab provides a convenient way to extend its own capabilities by calling user-provided DLL
functions. This is done using a few native Matlab calls: loadlibrary, calllib, libisloaded, libfunc-
tions, libfunctionsview.

For example, to load the FrontPanel DLL into Matlab for use, the following syntax can be used:

if ~libisloaded(‘okFrontPanel’)
 loadlibrary(‘okFrontPanel’, ‘okFrontPanelDLL.h’);
end

You can view the calling conventions and conversions Matlab has applied to the DLL methods by
calling the command “libfunctionsview(‘okFrontPanel’)”. An example way to call the DLL:

% Create a device structure:
xid.ptr = 0;
xid.serial = ‘‘;
xid.deviceID = ‘‘;
xid.major = 0;
xid.minor = 0;

% Construct an XEM3001v2 and open the first device:
xid.ptr = calllib(‘okFrontPanel’, ‘okFrontPanel_Construct’);
[ret, x] = calllib(‘okFrontPanel’, ‘okFrontPanel_Open’, xid.ptr, 0);
[xid.major, x] = calllib(‘okFrontPanel’, ...
 ‘okFrontPanel_GetDeviceMajorVersion’, xid.ptr);
[xid.minor, x] = calllib(‘okFrontPanel’, ...
 ‘okFrontPanel_GetDeviceMinorVersion’, xid.ptr);
[x, xid.serial] = calllib(‘okFrontPanel’, ...
 ‘okFrontPanel_GetSerialNumber’, xid.ptr, ‘ ‘);
[x, xid.deviceID] = calllib(‘okFrontPanel’, ...
 ‘okFrontPanel_GetDeviceID’, xid.ptr,
 ‘ ‘);

40

FrontPanel User’s Manual

www.opalkelly.com

Matlab API
While the above example shows how to use the FrontPanel DLL from within Matlab, we have al-
ready provided a more thorough version of this API for your usage. It is provided as a fully-func-
tioning sample of the DLL usage from within Matlab and utilizes Matlab’s object-oriented structure
to provide an API that is very similar to the C++ API in usage.

DLL Header File
Due to a bug in Matlab’s DLL usage, a slightly modified DLL header file must be used when
accessing the API through Matlab. This revised header defines the HANDLE objects as
unsigned long rather than void *. If the revised header file is not used, memory leaks will oc-
cur in Matlab.

Support Status
Please note that the Matlab API is not officially supported by Opal Kelly. While it is not officially
supported, we would like to keep it up-to-date. Please contact us via email if you have any sug-
gested changes to the Matlab API.

41

FrontPanel User’s Manual

www.opalkelly.com

The use of FrontPanel components to control and observe pieces of your FPGA design requires
the instantiation of one or more modules in your toplevel HDL. These modules can quickly and
easily be added into an existing or new design and take care of all the dirty work of communicat-
ing with the FrontPanel software.

The host interface is the block which connects directly to pins on the FPGA which are connected
to the USB microcontroller. This is the entry point for FrontPanel into your design.

The endpoints connect to a shared control bus on the host interface. This internal bus is used
to shuttle the endpoint connections to and from the host interface. Several endpoints may be
connected to this shared bus. FrontPanel uses endpoint addresses to select which endpoint it is
communicating with, so each endpoint must have its own unique address to work properly.

Endpoint Types
FrontPanel supports three basic types of endpoints: Wire, Trigger, and Pipe. Each can either be
an input (from host to target) or output (from target to host). Each endpoint type has a certain
address range which must be used for proper operation. The address is specified at the instan-
tiation of the endpoint module in your design.

Endpoint Type Address Range Sync/Async Data Type
Wire In 0x00 - 0x1F Asynchronous Signal state
Wire Out 0x20 - 0x3F Asynchronous Signal state
Trigger In 0x40 - 0x5F Synchronous One-shot
Trigger Out 0x60 - 0x7F Synchronous One-shot

HDL Modules

42

FrontPanel User’s Manual

www.opalkelly.com

Endpoint Type Address Range Sync/Async Data Type
Pipe In 0x80 - 0x9F Synchronous Multi-byte transfer
Pipe Out 0xA0 - 0xBF Synchronous Multi-byte transfer

Endpoints are instantiated in your HDL design and connected to the okHost target ports. Each
endpoint also has one or more ports which are connected to various signals in your design, de-
pending on the endpoint module.

Endpoint Addresses
Endpoints attach to the host interface on a shared bus. To properly route signals between the
host (PC) and target endpoints, each endpoint must be assigned a unique 8-bit address. For
performance reasons (to minimize USB transactions), each endpoint type has been assigned an
address range as indicated in the table above. When assigning addresses to your endpoints, be
sure to follow these ranges.

The endpoint address is assigned in HDL through an additional 8-bit input port on the endpoint
instance. Example instantiation for each endpoint type are shown in the sections below.

Register Bridge (USB 3.0 Only)
FrontPanel for USB 3.0 devices supports Wires, Triggers, and Pipes, as well as an additional
Register Bridge endpoint. This register bridge provides a 32-bit address space of 32-bit data
words for a total of 16 GB. User HDL responds to read and write requests from this Register
Bridge, effectively creating a large synchronous register file.

Endpoint Data Widths
Endpoint data widths vary depending on the interface according to the table below.

Endpoint Type USB 2.0 USB 3.0 PCI Express
Wire 16 32 32
Trigger 16 32 32
Pipe 16 32 64
Register Bridge - Address - 32 -
Register Bridge - Data - 32 -

Host Interface Clock Speed
The HDL host interface is a slave interface from the host. It runs at a fixed clock rate that is de-
pendent upon the interface type for the device.

● USB 2.0 interfaces run at 48 MHz (20.83 ns clock period)

● USB 3.0 interfaces run at 100.8 MHz (9.92 ns clock period)

● PCI Express (x1) interfaces run at 50 MHz (20 ns clock period)

43

FrontPanel User’s Manual

www.opalkelly.com

Building FPGA Projects with FrontPanel HDL Modules
The FrontPanel HDL Modules are provided as pre-synthesized files which get included in your
design flow. The following table lists these files and describes its content. By default, these files
are installed at C:\Program Files\Opal Kelly\FrontPanelUSB\FrontPanelHDL. In this directory
are several subdirectories that contain HDL modules built for different different devices. Choose
the library and NGC files suitable for your device.

Filename Description
okLibrary.v Verilog file containing black-box modules for Verilog projects.
okLibrary.vhd VHDL file containing black-box modules for VHDL projects.
okCore.ngc Pre-synthesized Xilinx module for the Host.
okWireIn.ngc Pre-synthesized Xilinx module for the Wire In endpoint.
okWireOut.ngc Pre-synthesized Xilinx module for the Wire Out endpoint.
okTriggerIn.ngc Pre-synthesized Xilinx module for the Trigger In endpoint.
okTriggerOut.ngc Pre-synthesized Xilinx module for the Trigger Out endpoint.
okPipeIn.ngc Pre-synthesized Xilinx module for the Pipe In endpoint.
okPipeOut.ngc Pre-synthesized Xilinx module for the Pipe Out endpoint.
okBTPipeIn.ngc Pre-synthesized Xilinx module for the Block-Throttled Pipe In

endpoint.
okBTPipeOut.ngc Pre-synthesized Xilinx module for the Block-Throttled Pipe

Out endpoint.

The Host Interface is comprised of two components - a core component which is pre-synthesized
and a wrapper component (in okLibrary.v or okLibrary.vhd) which includes the core compo-
nent as well as IOBs required for the connections to FPGA pins.

When you start a new design, you should copy okLibrary.v or okLibrary.vhd into the directory
with your other sources and add them to your project. This file will be synthesized just like your
other modules except that the HDL is mostly just a placeholder for the modules that have been
pre-synthesized. When properly added to a project, Project Navigator will list the source follows
similar to what is shown below:

You should also copy the pre-synthesized files (*.ngc) that you use into your project directory.
You do not need to copy module files that you are not using. The .ngc files will then be used by
the Xilinx tools during the Translate step in order to completely build the FPGA configuration file.

44

FrontPanel User’s Manual

www.opalkelly.com

45

FrontPanel User’s Manual

www.opalkelly.com

 HDL Modules - USB 2.0

XEM3001v1 Note
The first PCB revision of the XEM3001 (date code: 20040301) had an 8-bit host interface. All
newer implementations have a 16-bit interface. For the purposes of this section, the only things
which change are the HI_DATA, TI_DATA busses, as well as the widths of the endpoint connec-
tions (such as EP_DATAIN and EP_DATAOUT). For the XEM3001v1, simply substitute an 8-bit
bus in those places.

FPGA Resource Requirements
The FrontPanel-enabling modules have been designed to consume as few resources as possible
within the FPGA. The resource requirements for each block are listed in the tables below. Keep
in mind that these are requirements for an endpoint with all bits used. In many cases, the place
and route tools will optimize and remove unused components.

Resource Slice FFs 4-in LUTs Block RAMs
Host Interface 33 49 0
Wire In 16 14 0
Wire Out 8 5 0
Trigger In 32 21 0
Trigger Out 27 15 0
Pipe In 9 10 0
Pipe Out 0 6 0
BT Pipe In ? ? ?

46

FrontPanel User’s Manual

www.opalkelly.com

Resource Slice FFs 4-in LUTs Block RAMs
BT Pipe Out ? ? ?

Wire-OR
Multiple endpoints are attached to the ok2 bus on the okHost by using a Wire-OR. Each end-
point is told when it can assert its data on the bus. At all other times, it drives 0. The Wire-OR
component performs a bitwise OR operation on each bit of the bus and outputs the result. In this
manner, multiple endpoints can share a bus without requiring the use of tristates or a large mux.

The okWireOR is provided as a parameterized helper module in okLibrary.v and
okLibrary.vhd. Please refer to the provided samples to see how to instantiate this module.

The Host Interface
The host interface is the gateway for FrontPanel to control and observe your design. It contains
relatively simple logic that lets the USB microcontroller on the device communicate with the vari-
ous endpoints within the design. Exactly one host interface must be instantiated in any design
which uses the FrontPanel components.

The Host Interface component is the only block which is synthesized with your design. It con-
tains a Host Interface core component (provided as a pre-synthesized module) as well as the
necessary IOB components to connect to the host interface pins of the FPGA.

NOTE: The okHost is contained in okLibrary.v or okLibrary.vhd. Some details change from
device to device so the exact pinouts may differ slightly from the documentation below. Please
see the Opal Kelly samples in the FrontPanel installation directory for examples specific to each
supported device.

The diagram below illustrates the structural relationships between the various endpoints, the
okWireOR, and okHost modules.

okHost

okWireOut

okTriggerIn

okWireIn

okPipeIn

okHE

okEH

okPipeOut

okWireOR

okEHx

okGH

okHG

okHost
This module must be instantiated in any design that makes use of FrontPanel virtual interface
components. The following signals need to be connected directly to pins on the FPGA which go

47

FrontPanel User’s Manual

www.opalkelly.com

to the USB microcontroller on the device. For a listing of the pin locations for a particular prod-
uct, please see the user’s manual for that device.

Signal Direction Description
HI_IN[7:0] Input Host interface input signals.
HI_OUT[1:0] Output Host interface output signals.
HI_INOUT[15:0] In/Out Host interface bidirectional signals.

The remaining ports of the okHost are connected to a shared bus inside your design. These sig-
nals are collectively referred to as the target interface bus. Each endpoint must connect to these
signals for proper operation.
Signal Direction Description
OK1[30:0] Output Control signals to the target endpoints.
OK2[16:0] Input Control signals from the target endpoints.
TI_CLK Output Buffered copy of the host interface clock (48 MHz). This

signal does not need to be connected to the target end-
points because it is replicated within OK1.

Instantiation of the okHost is simple in either VHDL or Verilog. Use the templates below in your
toplevel HDL design. A more detailed listing can be found later in this manual as one of the
examples.

Verilog Instantiation:
okHost hostIF (.hi_in(hi_in),
 .hi_out(hi_out), .hi_inout(hi_inout),
 .ti_clk(ticlk), .ok1(ok1), .ok2(ok2));

VHDL Instantiation:
okHI : okHost port map (hi_in => hi_in,
 hi_out => hi_out, hi_inout => hi_inout,
 ti_clk => ticlk, ok1 => ok1, ok2 => ok2);

Each endpoint is connected to 48 target interface pins on the okHost module. The direction is
from the perspective of the endpoint module.

Signal Direction Description
OK1[30:0] Input Interface control (HI to target).
OK2[16:0] Output Interface control (Target to HI).

These signals are present in every endpoint. In the signal tables for the independent endpoints
below, we have left out these common signals.

okWireIn
In addition to the target interface pins, the okWireIn adds a single 16-bit output bus called
EP_DATAOUT[15:0]. The pins of this bus are connected to your design as wires and act as asyn-
chronous connections from FrontPanel components to your HDL.

48

FrontPanel User’s Manual

www.opalkelly.com

When FrontPanel updates the Wire Ins, it writes new values to the wires, then updates them all at
the same time. Therefore, although the wires are asynchronous endpoints, they are all updated
at the same time on the host interface clock.

Signal Direction Description
EP_DATAOUT[15:0] Output Wire values output. (sent from host)

Verilog Instantiation:
okWireIn wire03 (.ok1(ok1),
 .ep_addr(8’h03), .ep_dataout(ep03data));

VHDL Instantiation:
wire03 : okWireIn port map (ok1 => ok1,
 ep_addr => x“03”, ep_dataout => ep03data);

okWireOut
An okWireOut module adds a single 16-bit input bus called EP_DATAIN[15:0]. Signals on these
pins are read whenever FrontPanel updates the state of its wire values. In fact, all wires are cap-
tured simultaneously (synchronous to the host interface clock) and read out sequentially.

Signal Direction Description
EP_DATAIN[15:0] Input Wire values input. (to be sent to host)

Verilog Instantiation:
okWireOut wire21 (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’h21), .ep_datain(ep21data));

VHDL Instantiation:
wire21 : okWireOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x“21”, ep_datain => ep21data);

okTriggerIn
The okTriggerIn provides EP_CLK and EP_TRIGGER[15:0] as interface signals. The Trigger In
endpoint produces a single-cycle trigger pulse on any of EP_TRIGGER[15:0] which is synchronized
to the clock signal EP_CLK. Therefore, the single-cycle does not necessarily have to be a single
host interface cycle. Rather, the module takes care of crossing the clock boundary properly.

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_CLK Input Clock to which the trigger should synchronize.
EP_TRIGGER[15:0] Output Independent triggers from host.

Verilog Instantiation:
okTriggerIn trigIn53 (.ok1(ok1),
 .ep_addr(8’h53), .ep_clk(clk2), .ep_trigger(ep53trig));

49

FrontPanel User’s Manual

www.opalkelly.com

VHDL Instantiation:
trigIn53 : okTriggerIn port map (ok1 => ok1,
 ep_addr => x”53”, ep_clk => clk2, ep_trigger => ep53trig);

okTriggerOut
The target may trigger the host using this module. EP_TRIGGER[15:0] contains 16 independent
trigger signals which are monitored with respect to EP_CLK. If EP_TRIGGER[x] is asserted for the
rising edge of EP_CLK, then that trigger will be set. The next time the host checks trigger values,
the triggers will be cleared.

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_CLK Input Clock to which the trigger is synchronized.
EP_TRIGGER[15:0] Input Independent triggers to host.

Verilog Instantiation:
okTriggerOut trigOut6A (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’h6a), .ep_clk(clk2), .ep_trigger(ep6Atrig));

VHDL Instantiation:
trigOut6A : okTriggerOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”6a”, ep_clk => clk2, ep_trigger => ep6Atrig);

okPipeIn
The okPipeIn module provides a way to move synchronous multi-byte data from the host to the
target. As usual, the host is the master and therefore the target must accept data as it is moved
through this pipe (up to 48 MHz). The EP_WRITE signal is an active high signal which is asserted
when data is to be accepted by the target on EP_DATAOUT[15:0]. It is possible that EP_WRITE be
asserted for several consecutive cycles without deasserting. In such a case, EP_DATAOUT[15:0]
will be changing every clock.

This somewhat simple Pipe In implementation requires that the target interface be very respon-
sive to incoming pipe data. If the target is able to keep up with the throughput, but needs to
handle data in a block fashion, coupling the okPipeIn with a FIFO (from the Xilinx CORE genera-
tor) is a good solution. Alternatively, an okBTPipeIn can be used.

The timing diagram below indicates how data is presented by the okPipeIn to user HDL.
EP_DATAOUT contains valid data for any clock cycle where EP_WRITE is asserted during the rising
edge of TI_CLK. Note that the transfer sends 4 words in this example. Although contrived, it is
important to note that EP_WRITE may deassert during the transfer. This will generally happen with
longer transfers (>256 words).

 1 2 3 4 5 6 7 8 9 10 11 12 13

D0 D1 D2 D3

TI_CLK

EP_WRITE

EP_DATAOUT

50

FrontPanel User’s Manual

www.opalkelly.com

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAOUT[15:0] Output Pipe data output.
EP_WRITE Output Active high write signal. Data should be captured

when this signal is asserted.

Verilog Instantiation:
okPipeIn pipeIn9C (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’h9c), .ep_dataout(ep9Cpipe), .ep_write(ep9Cwrite));

VHDL Instantiation:
pipeIn9C : okPipeIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”9c”, ep_dataout => ep9Cpipe, ep_write => ep9Cwrite);

okPipeOut
The okPipeOut module implements a simple version of the Pipe Out endpoint to move synchro-
nous multi-byte data from the target to the host. Because the host is master, all reads (on the
target side) occur at the host’s whim. Therefore, data must be provided whenever EP_READ is
asserted.

This simple implementation of a Pipe Out endpoint requires that the target interface be somewhat
responsive to host read requests. If the target is able to keep up with the throughput, but needs
to handle data in a block fashion, coupling the okPipeOut with a FIFO (from the Xilinx CORE
generator) is a good solution. Alternatively, an okBTPipeOut can be used.

The timing diagram below indicates how the user HDL needs to respond to EP_READ with
EP_DATAIN valid data. When EP_READ is asserted for the rising edge of TI_CLK, user HDL must
respond with valid EP_DATAIN on the next clock edge, subject to setup and hold times appropriate
for (TAS and TAH in the FPGA CLB timing documentation). Of course, these times are also subject
to the particular routing and logic in your HDL implementation. Note that the transfer sends 4
words in this example. Although contrived, it is important to note that EP_READ may deassert dur-
ing the transfer. This will generally happen with longer transfers (>256 words).

 1 2 3 4 5 6 7 8 9 10 11

D0 D1 D2 D3

TI_CLK

EP_READ

EP_DATAIN

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAIN[15:0] Input Pipe data input.
EP_READ Output Active-high read signal. Data must be provided in the

cycle following as assertion of this signal.

Verilog Instantiation:
okPipeOut pipeOutA3 (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’ha3), .ep_datain(epA3pipe), .ep_read(epA3read));

51

FrontPanel User’s Manual

www.opalkelly.com

VHDL Instantiation:
pipeOutA3 : okPipeOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”a3”, ep_datain => epA3pipe, ep_read => epA3read);

okBTPipeIn
The Block-Throttled Pipe In module is similar to the okPipeIn module, but adds two signals,
EP_BLOCKSTROBE and EP_READY to handle block-level negotiation for data transfer. The host is still
master, but the FPGA controls EP_READY. When EP_READY is asserted, the host is free to transmit
a full block of data. When EP_READY is deasserted, the host will not transmit to the module.

EP_READY could, for example, be tied to a level indicator on a FIFO. When the FIFO has a full
block of space available, it will assert EP_READY signifying that it can accept a full block transfer.

 1 2 3 4 5 6 7 8 9 10 11 12 13

D0 D1 Dn-1Dn-2

TI_CLK

EP_READY

EP_BLOCKSTROBE

EP_WRITE

EP_DATAOUT

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAOUT[15:0] Output Pipe data output.
EP_WRITE Output Active-high write signal. Data should be captured

when this signal is asserted.
EP_BLOCKSTROBE Output Active-high block strobe. This is asserted for one

cycle just before a block of data is written.
EP_READY Input Active-high ready signal. Logic should assert this sig-

nal when it is prepared to receive a full block of data.

Verilog Instantiation:
okBTPipeIn pipeIn9C (.ok1(ok1), .ok2(ok2)
 .ep_addr(8’h9c), .ep_dataout(ep9Cpipe), .ep_write(ep9Cwrite),
 .ep_blockstrobe(ep9Cstrobe), .ep_ready(ep9cready));

VHDL Instantiation:
pipeIn9C : okBTPipeIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”9c”, ep_dataout => ep9Cpipe, ep_write => ep9Cwrite,
 ep_blockstrobe => ep9Cstrobe, ep_ready => ep9cready);

okBTPipeOut
The Block-Throttled Pipe Out module is similar to the okPipeOut module, but adds two signals,
EP_BLOCKSTROBE and EP_READY to handle block-level negotiation for data transfer. The host is still
master, but the FPGA controls EP_READY. When EP_READY is asserted, the host is free to read
a full block of data. When EP_READY is deasserted, the host will not read from the module.

EP_READY could, for example, be tied to a level indicator on a FIFO. When the FIFO has a full
block of data available, it will assert EP_READY signifying that a full block may be read from the
FIFO.

52

FrontPanel User’s Manual

www.opalkelly.com

 1 2 3 4 5 6 7 8 9 10 11 12 13

1-nD1D0D Dn-2

N * Tclk

D2

TI_CLK

EP_READY

EP_BLOCKSTROBE

EP_READ

EP_DATAIN

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAIN[15:0] Input Pipe data input.
EP_READ Output Active-high read signal. Data must be provided in the

cycle following as assertion of this signal.
EP_BLOCKSTROBE Output Active-high block strobe. This is asserted for one

cycle just before a block of data is read.
EP_READY Input Active-high ready signal. Logic should assert this sig-

nal when it is prepared to transmit a full block of data.

Verilog Instantiation:
okBTPipeOut pipeOutA3 (.ok1(ok1), .ok2(ok2)
 .ep_addr(8’ha3), .ep_datain(epA3pipe), .ep_read(epA3read),
 .ep_blockstrobe(epA3strobe), .ep_ready(epA3ready));

VHDL Instantiation:
pipeOutA3 : okBTPipeOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”a3”, ep_datain => epA3pipe, ep_read => epA3read,
 ep_blockstrobe => epA3strobe, ep_ready => epA3ready);

53

FrontPanel User’s Manual

www.opalkelly.com

HDL Modules - USB 3.0

FPGA Resource Requirements
The FrontPanel-enabling modules have been designed to consume as few resources as possible
within the FPGA. The resource requirements for each block are listed in the tables below. Keep
in mind that these are requirements for an endpoint with all bits used. In many cases, the place
and route tools will optimize and remove unused components.

Resource Slice FFs 4-in LUTs Block RAMs
Host Interface 33 49 0
Wire In 16 14 0
Wire Out 8 5 0
Trigger In 32 21 0
Trigger Out 27 15 0
Pipe In 9 10 0
Pipe Out 0 6 0
BT Pipe In ? ? ?
BT Pipe Out ? ? ?
Register Bridge ? ? ?

Wire-OR
Multiple endpoints are attached to the ok2 bus on the okHost by using a Wire-OR. Each end-
point is told when it can assert its data on the bus. At all other times, it drives 0. The Wire-OR

54

FrontPanel User’s Manual

www.opalkelly.com

component performs a bitwise OR operation on each bit of the bus and outputs the result. In this
manner, multiple endpoints can share a bus without requiring the use of tristates or a large mux.

The okWireOR is provided as a parameterized helper module in okLibrary.v and
okLibrary.vhd. Please refer to the provided samples to see how to instantiate this module.

The Host Interface
The host interface is the gateway for FrontPanel to control and observe your design. It contains
the logic that lets the USB microcontroller on the device communicate with the various endpoints
within the design. Exactly one host interface must be instantiated in any design which uses the
FrontPanel components.

The Host Interface component is the only block which is synthesized with your design. It con-
tains a Host Interface core component (provided as a pre-synthesized module) as well as the
necessary IOB components to connect to the host interface pins of the FPGA.

NOTE: The okHost is contained in okLibrary.v or okLibrary.vhd. Some details change from
device to device so the exact pinouts may differ slightly from the documentation below. Please
see the Opal Kelly samples in the FrontPanel installation directory for examples specific to each
supported device.

The diagram below illustrates the structural relationships between the various endpoints, the
okWireOR, and okHost modules.

okHost

okWireOut

okTriggerIn

okWireIn

okPipeIn

okHE

okEH

okPipeOut

okWireOR

okEHx

okUH

okHU

okUHU

okRegisterBridge

okHost
This module must be instantiated in any design that makes use of FrontPanel virtual interface
components. The following signals need to be connected directly to pins on the FPGA which go
to the USB microcontroller on the device. For a listing of the pin locations for a particular prod-
uct, please see the user’s manual for that device.

Signal Direction Description
okUH[4:0] Input Host interface input signals.

55

FrontPanel User’s Manual

www.opalkelly.com

Signal Direction Description
okHU[2:0] Output Host interface output signals.
okUHU[31:0] In/Out Host interface bidirectional signals.
okAA In/Out Host interface bidirectional signal

The remaining ports of the okHost are connected to a shared bus inside your design. These sig-
nals are collectively referred to as the target interface bus. Each endpoint must connect to these
signals for proper operation.

Signal Direction Description
okHE[112:0] Output Control signals to the target endpoints.
okEH[64:0] Input Control signals from the target endpoints.
okClk Output Buffered copy of the host interface clock (100.8 MHz).

Instantiation of the okHost is simple in either VHDL or Verilog. Use the templates below in your
toplevel HDL design. A more detailed listing can be found later in this manual as one of the
examples.

Verilog Instantiation:
okHost okHI (.okUH(okUH), .okHU(okHU), .okUHU(okUHU), .okAA(okAA),
 .okClk(okClk), .okHE(okHE), .okEH(okEH));

VHDL Instantiation:
okHI : okHost port map (okUH => okUH, okHU => okHU, okUHU =>okUHU, okAA => okAA,
 okClk => okClk, okHE => okHE, okEH => okEH);

Each endpoint is connected to 48 target interface pins on the okHost module. The direction is
from the perspective of the endpoint module.

Signal Direction Description
okHE[112:0] Input Interface control (host to endpoint)
okEH[64:0] Output Interface control (endpoint to host)

These signals are present in every endpoint. In the signal tables for the independent endpoints
below, we have left out these common signals.

okWireIn
In addition to the target interface pins, the okWireIn adds a single 32-bit output bus called
EP_DATAOUT[31:0]. The pins of this bus are connected to your design as wires and act as asyn-
chronous connections from FrontPanel components to your HDL.

When FrontPanel updates the Wire Ins, it writes new values to the wires, then updates them all at
the same time. Therefore, although the wires are asynchronous endpoints, they are all updated
at the same time on the host interface clock.

Signal Direction Description
EP_DATAOUT[31:0] Output Wire values output. (sent from host)

56

FrontPanel User’s Manual

www.opalkelly.com

Verilog Instantiation:
okWireIn wire03 (.okHE(okHE),
 .ep_addr(8’h03), .ep_dataout(ep03data));

VHDL Instantiation:
wire03 : okWireIn port map (okHE => okHE,
 ep_addr => x“03”, ep_dataout => ep03data);

okWireOut
An okWireOut module adds a single 16-bit input bus called EP_DATAIN. Signals on these pins
are read whenever FrontPanel updates the state of its wire values. In fact, all wires are captured
simultaneously (synchronous to the host interface clock) and read out sequentially.

Signal Direction Description
EP_DATAIN[31:0] Input Wire values input. (to be sent to host)

Verilog Instantiation:
okWireOut wire21 (.okHE(okHE), .okEH(okEH),
 .ep_addr(8’h21), .ep_datain(ep21data));

VHDL Instantiation:
wire21 : okWireOut port map (okHE => okHE, okEH => okEH,
 ep_addr => x“21”, ep_datain => ep21data);

okTriggerIn
The okTriggerIn provides EP_CLK and EP_TRIGGER as interface signals. The Trigger In endpoint
produces a single-cycle trigger pulse on any of EP_TRIGGER which is synchronized to the clock
signal EP_CLK. Therefore, the single-cycle does not necessarily have to be a single host interface
cycle. Rather, the module takes care of crossing the clock boundary properly.

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_CLK Input Clock to which the trigger should synchronize.
EP_TRIGGER[31:0] Output Independent triggers from host.

Verilog Instantiation:
okTriggerIn trigIn53 (.okHE(okHE),
 .ep_addr(8’h53), .ep_clk(clk2), .ep_trigger(ep53trig));

VHDL Instantiation:
trigIn53 : okTriggerIn port map (okHE => okHE,
 ep_addr => x”53”, ep_clk => clk2, ep_trigger => ep53trig);

okTriggerOut
The target may trigger the host using this module. EP_TRIGGER[15:0] contains 16 independent
trigger signals which are monitored with respect to EP_CLK. If EP_TRIGGER[x] is asserted for the

57

FrontPanel User’s Manual

www.opalkelly.com

rising edge of EP_CLK, then that trigger will be set. The next time the host checks trigger values,
the triggers will be cleared.

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_CLK Input Clock to which the trigger is synchronized.
EP_TRIGGER[31:0] Input Independent triggers to host.

Verilog Instantiation:
okTriggerOut trigOut6A (.okHE(okHE), .okEH(okEH),
 .ep_addr(8’h6a), .ep_clk(clk2), .ep_trigger(ep6Atrig));

VHDL Instantiation:
trigOut6A : okTriggerOut port map (okHE => okHE, okEH => okEH,
 ep_addr => x”6a”, ep_clk => clk2, ep_trigger => ep6Atrig);

okPipeIn
The okPipeIn module provides a way to move synchronous multi-byte data from the host to
the target. As usual, the host is the master and therefore the target must accept data as it is
moved through this pipe (up to 100.8 MHz). The EP_WRITE signal is an active high signal which
is asserted when data is to be accepted by the target on EP_DATAOUT[31:0]. It is possible that
EP_WRITE be asserted for several consecutive cycles without deasserting. In such a case,
EP_DATAOUT[31:0] will be changing every clock.

This somewhat simple Pipe In implementation requires that the target interface be very respon-
sive to incoming pipe data. If the target is able to keep up with the throughput, but needs to
handle data in a block fashion, coupling the okPipeIn with a FIFO (from the Xilinx CORE genera-
tor) is a good solution. Alternatively, an okBTPipeIn can be used.

The timing diagram below indicates how data is presented by the okPipeIn to user HDL.
EP_DATAOUT contains valid data for any clock cycle where EP_WRITE is asserted during the rising
edge of TI_CLK. Note that the transfer sends 4 words in this example. Although contrived, it is
important to note that EP_WRITE may deassert during the transfer. This will generally happen with
longer transfers (>256 words).

 1 2 3 4 5 6 7 8 9 10 11 12 13

D0 D1 D2 D3

TI_CLK

EP_WRITE

EP_DATAOUT

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAOUT[31:0] Output Pipe data output.
EP_WRITE Output Active high write signal. Data should be captured

when this signal is asserted.

58

FrontPanel User’s Manual

www.opalkelly.com

Verilog Instantiation:
okPipeIn pipeIn9C (.okHE(okHE), .okEH(okEH),
 .ep_addr(8’h9c), .ep_dataout(ep9Cpipe), .ep_write(ep9Cwrite));

VHDL Instantiation:
pipeIn9C : okPipeIn port map (okHE => okHE, okEH => okEH,
 ep_addr => x”9c”, ep_dataout => ep9Cpipe, ep_write => ep9Cwrite);

okPipeOut
The okPipeOut module implements a simple version of the Pipe Out endpoint to move synchro-
nous multi-byte data from the target to the host. Because the host is master, all reads (on the
target side) occur at the host’s whim. Therefore, data must be provided whenever EP_READ is
asserted.

This simple implementation of a Pipe Out endpoint requires that the target interface be somewhat
responsive to host read requests. If the target is able to keep up with the throughput, but needs
to handle data in a block fashion, coupling the okPipeOut with a FIFO (from the Xilinx CORE
generator) is a good solution. Alternatively, an okBTPipeOut can be used.

The timing diagram below indicates how the user HDL needs to respond to EP_READ with
EP_DATAIN valid data. When EP_READ is asserted for the rising edge of TI_CLK, user HDL must
respond with valid EP_DATAIN on the next clock edge, subject to setup and hold times appropriate
for (TAS and TAH in the FPGA CLB timing documentation). Of course, these times are also subject
to the particular routing and logic in your HDL implementation. Note that the transfer sends 4
words in this example. Although contrived, it is important to note that EP_READ may deassert dur-
ing the transfer. This will generally happen with longer transfers (>256 words).

 1 2 3 4 5 6 7 8 9 10 11

D0 D1 D2 D3

TI_CLK

EP_READ

EP_DATAIN

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAIN[31:0] Input Pipe data input.
EP_READ Output Active-high read signal. Data must be provided in the

cycle following as assertion of this signal.

Verilog Instantiation:
okPipeOut pipeOutA3 (.okHE(okHE), .okEH(okEH),
 .ep_addr(8’ha3), .ep_datain(epA3pipe), .ep_read(epA3read));

VHDL Instantiation:
pipeOutA3 : okPipeOut port map (okHE => okHE, okEH => okEH,
 ep_addr => x”a3”, ep_datain => epA3pipe, ep_read => epA3read);

okBTPipeIn
The Block-Throttled Pipe In module is similar to the okPipeIn module, but adds two signals,
EP_BLOCKSTROBE and EP_READY to handle block-level negotiation for data transfer. The host is still

59

FrontPanel User’s Manual

www.opalkelly.com

master, but the FPGA controls EP_READY. When EP_READY is asserted, the host is free to transmit
a full block of data. When EP_READY is deasserted, the host will not transmit to the module.

EP_READY could, for example, be tied to a level indicator on a FIFO. When the FIFO has a full
block of space available, it will assert EP_READY signifying that it can accept a full block transfer.

 1 2 3 4 5 6 7 8 9 10 11 12 13

D0 D1 Dn-1Dn-2

TI_CLK

EP_READY

EP_BLOCKSTROBE

EP_WRITE

EP_DATAOUT

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAOUT[31:0] Output Pipe data output.
EP_WRITE Output Active-high write signal. Data should be captured

when this signal is asserted.
EP_BLOCKSTROBE Output Active-high block strobe. This is asserted for one

cycle just before a block of data is written.
EP_READY Input Active-high ready signal. Logic should assert this sig-

nal when it is prepared to receive a full block of data.

Verilog Instantiation:
okBTPipeIn pipeIn9C (.okHE(okHE), .okEH(okEH),
 .ep_addr(8’h9c), .ep_dataout(ep9Cpipe), .ep_write(ep9Cwrite),
 .ep_blockstrobe(ep9Cstrobe), .ep_ready(ep9cready));

VHDL Instantiation:
pipeIn9C : okBTPipeIn port map (okHE => okHE, okEH => okEH,
 ep_addr => x”9c”, ep_dataout => ep9Cpipe, ep_write => ep9Cwrite,
 ep_blockstrobe => ep9Cstrobe, ep_ready => ep9cready);

okBTPipeOut
The Block-Throttled Pipe Out module is similar to the okPipeOut module, but adds two signals,
EP_BLOCKSTROBE and EP_READY to handle block-level negotiation for data transfer. The host is still
master, but the FPGA controls EP_READY. When EP_READY is asserted, the host is free to read
a full block of data. When EP_READY is deasserted, the host will not read from the module.

EP_READY could, for example, be tied to a level indicator on a FIFO. When the FIFO has a full
block of data available, it will assert EP_READY signifying that a full block may be read from the
FIFO.

60

FrontPanel User’s Manual

www.opalkelly.com

 1 2 3 4 5 6 7 8 9 10 11 12 13

1-nD1D0D Dn-2

N * Tclk

D2

TI_CLK

EP_READY

EP_BLOCKSTROBE

EP_READ

EP_DATAIN

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAIN[31:0] Input Pipe data input.
EP_READ Output Active-high read signal. Data must be provided in the

cycle following as assertion of this signal.
EP_BLOCKSTROBE Output Active-high block strobe. This is asserted for one

cycle just before a block of data is read.
EP_READY Input Active-high ready signal. Logic should assert this sig-

nal when it is prepared to transmit a full block of data.

Verilog Instantiation:
okBTPipeOut pipeOutA3 (.okHE(okHE), .okEH(okEH),
 .ep_addr(8’ha3), .ep_datain(epA3pipe), .ep_read(epA3read),
 .ep_blockstrobe(epA3strobe), .ep_ready(epA3ready));

VHDL Instantiation:
pipeOutA3 : okBTPipeOut port map (okHE => okHE, okEH => okEH,
 ep_addr => x”a3”, ep_datain => epA3pipe, ep_read => epA3read,
 ep_blockstrobe => epA3strobe, ep_ready => epA3ready);

okRegisterBridge
The Register Bridge provides synchronous register file access to a 32-bit data, 32-bit address
register space. User HDL is responsible for responding to register reads and writes, but is free to
interpret the address in any manner.

Register Writes
A register write is signalled with the one-cycle assertion of EP_WRITE. When EP_WRITE is assert-
ed, user HDL should capture both the address (on EP_ADDRESS) and data (on EP_DATAOUT). Reg-
ister writes may occur to any address in any clock cycle, including multiple consecutive cycles.

Register Reads
A register read is signalled with the one-cycle assertion of EP_READ. When EP_READ is asserted,
user HDL should capture the address (EP_ADDRESS) and respond in the next clock cycle by driv-
ing EP_DATAIN with the value requested. Register reads may be requested for any address in any
clock cycle, including multiple consecutive cycles.

61

FrontPanel User’s Manual

www.opalkelly.com

 1 2 3 4 5 6 7 8 9 10

ADDR0 ADDR1

DATA0 DATA1

ADDR2 ADDR3

DATA2 DATA3

okCLK

EP_ADDRESS

EP_WRITE

EP_DATAOUT

EP_READ

EP_DATAIN

Signal Direction Description
EP_WRITE Output Asserted during a write cycle.
EP_READ Output Asserted during a read cycle.
EP_ADDRESS[31:0] Output Driven with the requested address during read and

write cycles.
EP_DATAOUT[31:0] Output Driven with valid data during a write cycle.
EP_DATAIN[31:0] Input This value is captured in the cycle following a read

cycle.

Verilog Instantiation:
okRegisterBridge regBridge (.okHE(okHE), .okEH(okEH),
 .ep_write(regWrite), .ep_read(regRead), .ep_address(regAddress),
 .ep_dataout(regDataOut), .ep_datain(regDataIn));

VHDL Instantiation:
regBridge : okRegisterBridge port map (okHE => okHE, okEH => okEH,
 ep_write => regWrite, ep_read => regRead, ep_address => regAddress,
 ep_dataout => regDataOut, ep_datain => regDataIn);

62

FrontPanel User’s Manual

www.opalkelly.com

63

FrontPanel User’s Manual

www.opalkelly.com

 HDL Modules - PCI Express

FPGA Resource Requirements
The FrontPanel-enabling modules have been designed to consume as few resources as possible
within the FPGA. The resource requirements for each block are listed in the tables below. Keep
in mind that these are requirements for an endpoint with all bits used. In many cases, the place
and route tools will optimize and remove unused components.

Resource Slice FFs LUTs Block RAMs
Host 2365 2755 8
Wire In 64 4 0
Wire Out 32 35 0
Trigger In 128 68 0
Trigger Out 99 69 0
Pipe In 41 44 2
Pipe Out 41 44 2

The resource requirements above do not include the resources required by instantiated FIFOs
except for the Block RAM requirements.

Wire-OR
Multiple endpoints are attached to the okEH bus on the okHost by using a Wire-OR. Each end-
point is told when it can assert its data on the bus. At all other times, it drives 0. The Wire-OR
component performs a bitwise OR operation on each bit of the bus and outputs the result. In this
manner, multiple endpoints can share a bus without requiring the use of tristates or a large mux.

64

FrontPanel User’s Manual

www.opalkelly.com

The okWireOR is provided as a parameterized helper module in okLibrary.v and
okLibrary.vhd. Please refer to the provided samples to see how to instantiate this module.

The Host Interface
The host interface is the gateway for FrontPanel to control and observe your design. It contains
the logic that communicates with the PCI Express bridge. Exactly one host interface must be
instantiated in any design which uses the FrontPanel components.

The okHost component is the only block which is synthesized with your design. It contains an
okCoreHarness component (provided as a pre-synthesized module) as well as the necessary
IOB components to connect to the host interface pins of the FPGA.

The diagram below illustrates the structural relationships between the various endpoints, the
okWireOR, and okHost modules.

okHost

okWireOut

okTriggerIn

okWireIn

okPipeIn

okHE

okEH

okEHO

okEHI

okHEO

okHEI

okPipeOut

okWireOR

okEHx

okGH

okHG

okHost
This module must be instantiated in any design that makes use of FrontPanel virtual interface
components. The following signals need to be connected directly to pins on the FPGA which
go to the USB microcontroller on the XEM. For a listing of the pin locations for a particular XEM
product, please see the user’s manual for that device.

Signal Direction Description
okGH[28:0] Input Input to the host interface from the PCI Express bridge
okHG[27:0] Output Output from the host interface to the PCI Express bridge

The remaining ports of the okHost are connected to endpoints inside your design. These signals
are collectively referred to as the target interface bus. Endpoints connect to one or more of these
signals for proper operation.

Signal Direction Description
okEH[32:0] Input Endpoint - to - Host signals (Wires, Triggers)
okEHI[37:0] Input Endpoint - to - Host signals (for Pipe In)
okEHO[102:0] Input Endpoint - to - Host signals (for Pipe Out)

65

FrontPanel User’s Manual

www.opalkelly.com

Signal Direction Description
okHE[46:0] Output Host - to - Endpoint signals (Wires, Triggers)
okHEI[99:0] Output Host - to - Endpoint signals (for Pipe In)
okHEO[43:0] Output Host - to - Endpoint signals (for Pipe Out)
ti_clk Output Copy of the host interface 50 MHz clock

Instantiation of the okHost is simple in either VHDL or Verilog. Use the templates below in your
toplevel HDL design. A more detailed listing can be found later in this manual as one of the
examples. If pipes are not used in your design, you can force the inputs (okEHI and okEHO) to all
0’s and leave the outputs (okHEI and okHEO) unconnected.

Verilog Instantiation:
okHost_XEM6110 hostIF (.okGH(okGH), .okHG(okHG), ..., .ti_clk(ti_clk));

VHDL Instantiation:
okHI : okHost_XEM6110 port map (okGH => okGH, okHG => okHG, ...
 ti_clk => ticlk);

okWireIn
In addition to the target interface pins, the okWireIn adds a single 32-bit output bus called
EP_DATAOUT[31:0]. The pins of this bus are connected to your design as wires and act as asyn-
chronous connections from FrontPanel components to your HDL.

When FrontPanel updates the Wire Ins, it writes new values to the wires, then updates them all at
the same time. Therefore, although the wires are asynchronous endpoints, they are all updated
at the same time on the host interface clock.

Signal Direction Description
EP_DATAOUT[31:0] Output Wire values output. (sent from host)

Verilog Instantiation:
okWireIn wire03 (.ok1(okHE), .ep_addr(8’h03), .ep_dataout(ep03data));

VHDL Instantiation:
wire03 : okWireIn port map (ok1 => okHE,
 ep_addr => x“03”, ep_dataout => ep03data);

okWireOut
An okWireOut module adds a single 32-bit input bus called EP_DATAIN[31:0]. Signals on these
pins are read whenever FrontPanel updates the state of its wire values. In fact, all wires are cap-
tured simultaneously (synchronous to the host interface clock) and read out sequentially.

Signal Direction Description
EP_DATAIN[31:0] Input Wire values input. (to be sent to host)

66

FrontPanel User’s Manual

www.opalkelly.com

Verilog Instantiation:
okWireOut wire21 (.ok1(okHE), .ok2(okEHx),
 .ep_addr(8’h21), .ep_datain(ep21data));

VHDL Instantiation:
wire21 : okWireOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x“21”, ep_datain => ep21data);

okTriggerIn
The okTriggerIn provides EP_CLK and EP_TRIGGER[31:0] as interface signals. The Trigger In
endpoint produces a single-cycle trigger pulse on any of EP_TRIGGER[31:0] which is synchronized
to the clock signal EP_CLK. Therefore, the single-cycle does not necessarily have to be a single
host interface cycle. Rather, the module takes care of crossing the clock boundary properly.

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_CLK Input Clock to which the trigger should synchronize.
EP_TRIGGER[31:0] Output Independent triggers from host.

Verilog Instantiation:
okTriggerIn trigIn53 (.ok1(okHE),
 .ep_addr(8’h53), .ep_clk(clk2), .ep_trigger(ep53trig));

VHDL Instantiation:
trigIn53 : okTriggerIn port map (ok1 => okHE,
 ep_addr => x”53”, ep_clk => clk2, ep_trigger => ep53trig);

okTriggerOut
The target may trigger the host using this module. EP_TRIGGER[31:0] contains 32 independent
trigger signals which are monitored with respect to EP_CLK. If EP_TRIGGER[x] is asserted for the
rising edge of EP_CLK, then that trigger will be set. The next time the host checks trigger values,
the triggers will be cleared.

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_CLK Input Clock to which the trigger is synchronized.
EP_TRIGGER[31:0] Input Independent triggers to host.

Verilog Instantiation:
okTriggerOut trigOut6A (.ok1(okHE), .ok2(okEHx),
 .ep_addr(8’h6a), .ep_clk(clk2), .ep_trigger(ep6Atrig));

VHDL Instantiation:
trigOut6A : okTriggerOut port map (ok1 => okHE, ok2 => okEHx,
 ep_addr => x”6a”, ep_clk => clk2, ep_trigger => ep6Atrig);

67

FrontPanel User’s Manual

www.opalkelly.com

okPipeIn
The okPipeIn module provides a way to move synchronous multi-byte data from the host to the
target. As usual, the host is the master and initiates all transfers. Therefore the target should be
ready to accept data as it is moved through this pipe (up to 50 MHz). A small FIFO (511 words) is
built into the okPipeIn to allow some flexibility, but it is generally assumed that the transfer will run
to completion expeditiously.

EP_CLK may be independent of the host interface clock. When the API initiates a pipe trans-
fer (WriteToPipeIn), EP_START wil be asserted for a single EP_CLK cycle. This is to indicate to
user HDL that the transfer has started. User HDL may reset the FIFO (empty it) at any time but
requires at least three clock cycles to complete.. EP_FIFO_RESET may be tied to EP_START for
convenient operation.

The EP_EMPTY signal will deassert when data is available in the FIFO. User code should then
assert EP_READ to read each available word until EP_EMPTY is deasserted. EP_VALID is used to
indicate when valid data is available on EP_DATA. EP_COUNT[8:0] pessimistically indicates the
number of words remianing in the FIFO. It may temporarily under-report the count, but will never
over-report so that underflow is avoided.

At the end of the complete transfer, EP_DONE is asserted for one EP_CLK cycle.

The timing diagram below indicates how data is presented by the okPipeIn to user HDL. In this
case, 4 data words have been placed into the FIFO by the okHost. These four data words are
read out with a brief pause inserted for illustration. EP_EMPTY is shown coincident with the last
word read out and remains asserted to indicate that no more data is available. Any reads at this
point will cause an underflow condition (not indicated) and EP_VALID will not be asserted.

 1 2 3 4 5 6 7 8 9 10 11

3D2D1D0D

EP_CLK

EP_READ

EP_DATAOUT

EP_VALID

EP_EMPTY

Signal Direction Description
okHEI[99:0] Input Host - to - endpoint control signals.
okEHI[37:0] Output Endpoint - to - host control signals.
EP_CLK Input Endpoint-side clock to FIFO.
EP_START Output Indicates the start of a transfer.
EP_DONE Output Indicates the completion of a transfer.
EP_FIFO_RESET Input FIFO reset signal.
EP_READ Input Application asserts this to read a word.
EP_DATA[63:0] Output Pipe data output.
EP_VALID Output Asserted one cycle after a successful read.
EP_COUNT[8:0] Output Indicates the number of words available in the FIFO.
EP_EMPTY Output Asserted after the last successful read. Remains as-

serted while the FIFO is empty.

68

FrontPanel User’s Manual

www.opalkelly.com

Verilog Instantiation:
okPipeIn pipeIn (.okHEI(okHEI), .okEHI(okEHI),
 .ep_clk(pipeInClk), .ep_start(pipeInStart), .epdone(pipeInDone),
 .ep_fifo_reset(pipeInReset), .ep_read(pipeInRead), .ep_data(pipeInData),
 .ep_valid(pipeInValid), .ep_count(pipeInCount), .ep_empty(pipeInEmpty));

VHDL Instantiation:
pipeIn : okPipeIn port map (okHEI => okHEI, okEHI => okEHI,
 ep_clk => pipeInClk, ep_start => pipeInStart, ep_done => pipeInDone,
 ep_fifo_reset => pipeInReset, ep_read => pipeInRead, ep_data => pipeInData,
 ep_valid => pipeInValid, ep_count => pipeInCount, ep_empty => pipeInEmpty);

okPipeOut
The okPipeOut module provides a way to move synchronous multi-byte data from the target to
the host. As usual, the host is the master and initiates all transfers. The target should be ready
to provide data when it is requested. A small FIFO (511 words) is built into the okPipeOut to allow
some flexibility, but the transfer will run to completion in all cases. If user HDL is unable to keep
up with the transfer, the FIFO will underrun. This error condition will be reported to user soft-
ware, but the transfer will complete and the data following underrun will be unreliable.

EP_CLK may be independent of the host interface clock. When the API initiates a pipe transfer
(ReadFromPipeOut), EP_START wil be asserted for a single EP_CLK cycle. This is to indicate to
user HDL that the transfer has started. User HDL may start filling the transfer FIFO at this time.
User HDL may reset the FIFO at any time, but requires at least three clock cycles to complete.
During this time, EP_FULL will be asserted.. EP_FIFO_RESET may be tied to EP_START for conve-
nient operation.

EP_FULL will assert when the FIFO is unable to accept data. EP_COUNT indicates the number of
words currently in the FIFO and may also be used by the user HDL to determine when to provide
more data.

The timing diagram below illustrates the communication.

 1 2 3 4 5 6 7 8 9 10 11

3D2D1D0D

EP_CLK

EP_WRITE

EP_DATA

Signal Direction Description
okHEO[43:0] Input Host - to - endpoint control signals.
okEHO[102:0] Output Endpoint - to - host control signals.
EP_CLK Input Endpoint-side clock to the FIFO.
EP_START Output Indicates the start of a transfer.
EP_DONE Output Indicates the completion of a transfer.
EP_FIFO_RESET Input FIFO reset signal.
EP_WRITE Input FIFO write signal to enter a single data word.
EP_DATA[63:0] Input Pipe data input.
EP_COUNT[8:0] Output Indicates the number of words in the FIFO.

69

FrontPanel User’s Manual

www.opalkelly.com

Signal Direction Description
EP_FULL Output Asserted when the FIFO is full.

Verilog Instantiation:
okPipeOut pipeOut (.okHEO(okHEO), .okEHO(okEHO),
 .ep_clk(pipeOutClk), .ep_start(pipeOutStart), .ep_done(pipeOutDone),
 .ep_fifo_reset(pipeOutReset), .ep_write(pipeOutWrite), .ep_data(pipeOutData),
 .ep_count(pipeOutCount), .ep_full(pipeOutFull));

VHDL Instantiation:
pipeOut : okPipeOut port map (okHEO => okHEO, okEHO => okEHO,
 ep_clk => pipeOutClk, ep_start => pipeOutStart, ep_done => pipeOutDone,
 ep_fifo_reset=>pipeOutReset, ep_write=>pipeOutWrite, ep_data => pipeOutData,
 ep_count => pipeOutCount, ep_full => pipeOutFull);

70

FrontPanel User’s Manual

www.opalkelly.com

71

FrontPanel User’s Manual

www.opalkelly.com

Using the FrontPanel Application

FrontPanel provides essential functionality to make using FrontPanel devices easy and intuitive
to use. This functionality includes downloading FPGA configuration files and configuring the
on-board peripherals for use in a design, but it also extends to loading “FrontPanel Profiles” to
control and interface to your design.

Main Window
The FrontPanel interface has a simple presentation as shown on the next page with three at-
tached devices.

Available devices are shown in individual “Device Panels” with each panel providing functionality
specifically for that device. Device Panels are automatically updated as USB devices are added
and removed from the bus. If you have BIOS-supported PCI Express hot-plug (e.g. ExpressCard
on laptops), then PCI Express updates also occur.

The left side of the Device Panel is populated with information such as the product name, the
user-specified Device ID, serial number, and firmware. The Device ID is a clickable label. When
clicked, a dialog will appear allowing you to change the Device ID.

Below the device information is a small icon which will be colored (blue and green) when the
FPGA on the device is enabled with the FrontPanel Host Interface. When a Host Interface is not
detected, the icon will display in gray.

Icons to the right of the device information are described in the following sections.

72

FrontPanel User’s Manual

www.opalkelly.com

Load a FrontPanel Profile
A FrontPanel “Profile” is an XML file with the extension .XFP. The profile describes one or more
Interface Panels which communicate with your device. A new profile may be loaded at any time,
but only one profile for each device is available at any time. That is, the previous profile is un-
loaded before loading in the new one. You can load a new profile by clicking on the button shown
at the left. A file selector dialog will open asking you to select a profile.

When a selection is confirmed, the profile is loaded and the first panel is displayed. If there are
more panels in the profile, they will not be displayed. However, a toggle button is displayed in the
“Panel Selections” area for each Interface Panel to activate (or deactivate) a specific panel. To
open another panel, simply click that panel’s button on the list.

Panel Identification
The colored sphere next to the Panel Selection buttons has a drop-down menu to show or hide
all panels, unload the FrontPanel Profile, and change the associated color. The color of the
sphere is matched to the color of spheres in the status area for any panels open from the active
FrontPanel Profile. When multiple devices are attached, the spheres help quickly identify Inter-
face Panels with the appropriate device.

Drag and Drop
As an alternative to opening the file dialog to load a new profile, you can drag an XFP file and
drop it on the button. This will load the profile and open the first panel just like opening the file
through the file selector.

FPGA Configuration Download
To download an FPGA configuration file to the target device, simply click on the icon shown to
the left. A file selector dialog will appear from which you can choose the Xilinx bitfile to down-
load. If you accept the file, the download will proceed immediately. Four things happen when
you configure the device:

73

FrontPanel User’s Manual

www.opalkelly.com

1. The on-board PLL is configured with the parameters stored in EEPROM.

2. The FPGA is reset and a programming sequence is initiated.

3. The configuration data is downloaded to the FPGA.

4. The FPGA is checked to verify that the configuration was successful (DONE is asserted).

Once complete, the FPGA is now configured and “running” with the new design.

Drag and Drop
As an alternative to clicking the download icon and using a file selector to choose the configura-
tion file, you can simply drag a Xilinx bitfile onto the icon and release it. FrontPanel then pro-
ceeds as if you had just chosen the file in the file selector.

Device Setup
Several device configuration interfaces are available from the Device Setup icon. Available con-
figuration interfaces depend on the specific device attached and the features it supports.

Firmware Information
Various information is available about the device firmware version on this page. If the device is
an FMC carrier such as the Shuttle LX1 (XEM6006) or Shuttle TX1 (XEM7350), peripheral infor-
mation is also available if the peripheral has an IPMI EEPROM.

Device Settings
USB 3.0 devices support Device Settings that may be either non-volatile (persistent settings
stored in Flash memory) or volatile (settings that monitor or control device behavior while power
is available). These settings may be viewed and edited on this page.

Reset Profile
USB 3.0 devices support Reset Profiles (see the Reset Profiles section in this document). Config-
uring these reset profiles may be done through this user interface.

74

FrontPanel User’s Manual

www.opalkelly.com

Flash Programming Tool
FrontPanel is able to program the on-board Flash
memory for supported devices. The typical applica-
tion for Flash programming is downloading an FPGA
configuration bitfile to the Flash to allow the device to
boot the FPGA on power-up in a “non-tethered”
application. The host interface may be used after
boot, if required.

On-board Flash memory is classified as one of two
types:

• System Flash is available to the host control-
ler and may be accessed without an active
FPGA configuration. This memory may not
be accessed directly by the FPGA. System
Flash is only availble on USB 3.0 devices.

• FPGA Flash is connected to the FPGA. It is
accessible only to the host through the use of
an FPGA configuration that supports commu-
nication between the host and the memory.

System Flash Programming
FrontPanel uses the FlashErase, FlashWrite, and
FlashRead APIs to erase and program the System Flash memory, if available. Please see the
corresponding Device User’s Manual for available size and memory layout information which is
also available via the DeviceInfo API structure.

FPGA Flash Programming
Programming the FPGA Flash requires FrontPanel to configure the FPGA with a special bitfile
that allows FrontPanel to access the Flash memory. This bitfile is first downloaded to the FPGA
before the Flash erase or programming steps are performed.

Device Sensors Panel
When connected to supported devices, the Device Sensors icon will appear. Click on this icon to
toggle the Device Sensors panel. The panel displays all available device sensors and their cor-
responding values. The panel is automatically updated periodically.

75

FrontPanel User’s Manual

www.opalkelly.com

PLL Configuration (CY22150)
The on-board PLL is available to the USB microcontroller as an I2C peripheral. Through
FrontPanel, you can configure the PLL using the PLL Configuration Dialog which is opened by
clicking on the icon to the left. When you do so, the current PLL configuration is read and the
following dialog appears:

As you make changes in the PLL Configuration Dialog, the output frequencies are automatically
updated to indicate how the outputs will behave with the current selections.

Details of the PLL configuration are available in Cypress documentation for the CY22150. A brief
description of the parameters follows.

VCO Setup
The CY22150 contains a single PLL which is used as the source to a divider network which then
produces the signals at the output. Because of this, all outputs are referenced from the same
PLL. The VCO frequency is produced by dividing the reference frequency (fixed at 48 MHz for
the XEM3001) by Q and multiplying by P. Cypress specifies that the VCO frequency should be
kept between 250 kHz and 400 MHz for reliable operation.

The valid range for P is 8 to 2055. The valid range for Q is 2 to 129.

Divider #1 and #2
Two divide-by-N blocks are available, DIV1N and DIV2N, each with a range from 4 to 127. The
source for each divider can either be the VCO or the input reference. The divider outputs are
then used to generate the resulting output signal.

Outputs
Each of the six outputs can have a different source as indicated by the combobox. The choice
of this source directly determines the clock frequency for that output. Each output can then be
independently enabled or disabled using the checkboxes to the right.

76

FrontPanel User’s Manual

www.opalkelly.com

EEPROM Read
The XEM stores the microcontroller bootcode in a small serial EEPROM which is also used to
store a single set of PLL parameters. These parameters are loaded before each FPGA configu-
ration so that valid clock signals are presented to the FPGA when it comes out of configuration.

The PLL Configuration Dialog allows you to read and write this section of EEPROM by using the
buttons at the lower left. When you click the button labelled “EEPROM Read,” the stored PLL
configuration is read from the EEPROM and the PLL Configuration Dialog is updated to represent
these values. The PLL is not re-configured yet. To configure the PLL with these values, you
must press “Apply.”

EEPROM Write
The current configuration represented in the PLL Configuration Dialog (not the current PLL con-
figuration) is written to the EEPROM when you press this button. The next time a configuration
file is downloaded to the FPGA, this configuration will be loaded into the PLL.

Apply
Any time you change a setting in the PLL Configuration Dialog or load the EEPROM settings, the
values change in the dialog, but do not affect the actual PLL on-board. To make the changes
take effect, you must press the “Apply” button.

Example PLL Configurations
The table below lists several example frequencies and the PLL settings required to generate that
output. If more than one frequency is required for the FPGA, remember that the PLL only has
a single VCO, so the outputs must be generated from a single source and (possibly) multiple
divider values.

Output
Frequency

P Q VCO
Frequency

DIV1N Source

100 MHz 400 48 400 MHz 4 DIV1CLK/DIV1N
80 MHz 20 4 240 MHz N/A DIV1CLK/3
75 MHz 300 48 300 MHz N/A DIV2CLK/4
66.66 MHz 400 48 400 MHz 6 DIV1CLK/DIV1N
50 MHz 400 48 400 MHz 8 DIV1CLK/DIV1N
15 MHz 20 4 240 MHz 16 DIV1CLK/DIV1N

Of course, many other configurations are possible including those with multiple output frequen-
cies. Please see the specific PLL datasheet for more information.

PLL Configuration (CY22393)
The XEM3010 and XEM3050 products include a Cypress CY22393 PLL which has a multi-PLL
configuration and is therefore more capable than the CY22150. Configuration for the Cypress
CY22393 is also available through the FrontPanel API and the FrontPanel Application. Please

refer to the Cypress datasheet for parameter details on the CY22393.

Preferences
The Preferences dialog (shown below) can be shown by navigating under the FrontPanel menu:

77

FrontPanel User’s Manual

www.opalkelly.com

FrontPanel → Preferences...

Wire Update Rate
Wire Out enpoints are updated using timed polling by the FrontPanel software. This update rate
is determined by your design’s needs (how quickly you need to see wire changes) as well as the
performance of your PC. On an Athlon 2100+, even the fastest update rate places minimal (<2%)
load on the CPU.

Configure PLL Before FPGA Download
This option determines whether an FPGA download configures the PLL prior to download. In
most cases, this is the desired behavior so that a valid clock is available when the FPGA comes
out of the configuration state. Sometimes, however, you may want to keep the current PLL set-
tings in effect and not update the EEPROM.

Show Panels in Taskbar
When unchecked, each FrontPanel “panel” is displayed in a toolbox window which does not reg-
ister with the taskbar. When checked, these panels will register with the taskbar so that you can
easily select a particular panel.

Enable Asynchronous Transfers (USB devices only)
Asynchronous transfers allow USB transfer requests to be queued and sequenced by the oper-
ating system. This decreases software overhead and increases overall throughput. However,
many Windows 2000-based machines have problems with asynchronous transfers and may not
communicate with the FPGA properly when this feature is enabled.

You may find that you need to disable asynchronous transfers before any FPGA communication.
Otherwise, the communication link may become “tainted” and will not work. Therefore, if you
experience problems with Windows 2000 and FrontPanel communication, we advise that you dis-
able asynchronous transfers before communicating with your board.

From within your own software, there is an API method to control this feature.

Command Line Arguments
The FrontPanel executable may be started on the command line with some arguments to auto-
mate startup activities.

78

FrontPanel User’s Manual

www.opalkelly.com

Loading a Bitfile
Use this argument to tell FrontPanel to startup, detect devices, and download the specified FPGA
bitfile to the device.

FrontPanel.exe --load-bitfile=counters.bit

Loading a FrontPanel Profile
Use this argument to tell FrontPanel to startup, detect devices, and load the specified FrontPanel
profile.

FrontPanel.exe --load-profile=counters.xfp

Selecting a Device by Serial Number
By default, FrontPanel will apply command line arguments to the first device detected. You can
optionally specify a device for subsequent command line arguments with this option.

FrontPanel.exe --device-serial=12340009819 \
 --load-bitfile=counters.bit
 --load-profile=counters.xfp

79

FrontPanel User’s Manual

www.opalkelly.com

Component XML

FrontPanel user interfaces (“panels”) are constructed from “components” - graphical devices
that interface to your design or serve some decorative function. The interfaces are described in
FrontPanel “profiles” which are written in a text file format known as XML. The XML profile con-
tains structure which defines where each component exists on a panel as well as the connections
that component has to your FPGA design. FrontPanel XML files end with the extension XFP.

XML
XML stands for eXtensible Markup Language and is used in documents containing structured
information. The syntax for XML is defined at http://www.w3.org/TR/WD-xml. For its part, XML
does not define the content but rather how the content is organized. FrontPanel uses XML
because the standard is well-known and there are many tools available to read, write, edit, and
parse the content. It is also easily human-readable so you can read and write FrontPanel profiles
in a text-editor with ease.

A complete tutorial of XML is beyond the scope of this text. What is provided here is a basic tuto-
rial of the aspects of XML required to compose FrontPanel profiles. Please refer to the enormous
on-line resources available for a complete understanding of XML, its applications, and the tools
available for working with XML.

Basic Structure for FrontPanel
The basic FrontPanel XFP file has the following structure:

http://www.w3.org/TR/WD-xml

80

FrontPanel User’s Manual

www.opalkelly.com

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!-- A basic FrontPanel Example -->

<resource version=”2.3.0.1”>
<object class=”okPanel” name=”panel1”>
 <title>Main Panel Title</title>
 <size>180,70</size>

 ... Main Panel component XML will go here ...

</object>
</resource>

This simple example defines a single panel. Note the first line starting with <?xml...> and the <re-
source version=”2.3.0.1”> ... </resource> are required content in any FrontPanel profile.

Comments
Comments in XML can appear anywhere outside of normal markup. They have the form as
shown below. Note that the string “--” is not allowed within a comment and that the comment
must end with exactly two “-” (hyphen) characters and the “>” character.

<!-- This is some comment text. -->

<!-- This text is NOT allowed because it is incorrectly terminated: --->

Start-Tags and End-Tags
The start- and end-tags enclose an XML element. In the listing below, the XML element is an
“object” and its content is defined between the first line (Start-Tag) and last line (End-Tag). This
particular element contains a child element, “label” which also has (as a requirement) a Start-Tag
and an End-Tag.

<object class=”okStaticText”>
 <label>Hello there</label>
</object>

The “object” element in the above example contains one attribute, “class” which is set to “okStat-
icText”. In FrontPanel, all of the graphical components are “object” elements with an attribute
which defines what type of component it is.

Case Sensitivity
All XML component types and value names are currently case sensitive. That is, “okPushButton”
is not a valid component name, but “okPushbutton” is.

81

FrontPanel User’s Manual

www.opalkelly.com

Element Data Types
All FrontPanel components have sub-elements which specify certain properties of the compo-
nent. These sub-elements are listed with each component and take a certain data type as their
value. The various data types available along with an example and description are shown in the
table below.

Type Example Description
POSITION 50,75 Position represented as: x,y in pixels.
SIZE 40,80 Size represented as: width,height in pixels. Many controls

will accept -1 as a width and/or height and automatically
compute the best value.

TEXT Hello World A text string. No quotes are necessary.
HEX BYTE 0x3F An 8-bit hexadecimal number. The leading “0x” is required.
NUMBER 7 Numeral, range is determined by object type.
BIGNUMBER 179

0x7FFFFFF
Like NUMBER, but also supports hexadecimal with a “0x”
prefix. Decimal values are supported to 31 bits. Hexadeci-
mal values are supported to 63 bits.

COLOR #2040A3 24-bit hexadecimal HTML color format #RRGGBB.
STYLE ROUND The STYLE type is object-dependent and contains one or

more styles which can be or’ed together using the pipe (“|”)
symbol.

Component Types
The following figure shows most of the FrontPanel components available. Some components do
not have a corresponding GUI representation. This image is taken from the Controls Sample.

okStaticText

okStaticBox

okPushbutton

okHex

okSlider

okTriggerButton

okToggleButton

okToggleCheck

okDigitEntry
okPanel

okLED

82

FrontPanel User’s Manual

www.opalkelly.com

okStaticText
This is a simple control to display static text within a panel.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text.

XML Example:
<object class=”okStaticText”>
 <label>Disable</label>
 <position>90,25</position>
 <size>60,20</size>
</object>

okStaticBox
This is a simple control to display static text within a panel. It also displays a box which is helpful
to distinguish parts of a control panel.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text.

XML Example:
<object class=”okStaticBox”>
 <label>Disable</label>
 <position>90,25</position>
 <size>60,20</size>
</object>

okPushbutton (Wire In)
This component models a physical pushbutton and connects to a Wire In endpoint. By default,
the pushbutton is ‘unpressed’ and the corresponding wire is deasserted (logic 0). When pressed,
the corresponding wire is asserted (logic 1). The pushbutton does not hold its state -- that is, to
maintain a logic 1, you have to hold the pushbutton in its pressed state.

For an alternative component that does maintain its state, see the okToggleButton.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).

83

FrontPanel User’s Manual

www.opalkelly.com

XML Example:
<object class=”okPushbutton”>
 <label>Disable</label>
 <position>90,25</position>
 <size>60,20</size>
 <endpoint>0x00</endpoint>
 <bit>1</bit>
 <tooltip>Momentarily disable counter #1</tooltip>
</object>

okToggleButton (Wire In)
The okToggleButton is similar to the okPushbutton in that it connects to a Wire In endpoint. In
contrast to the okPushbutton, however, this component maintains its state just as a physical
toggle switch would. When unpressed, the corresponding wire is deasserted (logic 0). When
pressed, the corresponding wire is asserted (logic 1).

Note: This component is not presently available under OS X.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).

XML Example:
<object class=”okToggleButton”>
 <label>1</label>
 <position>10,10</position>
 <size>20,20</size>
 <endpoint>0x00</endpoint>
 <bit>0</bit>
</object>

okToggleCheck (Wire In)
The okToggleCheck attaches to a Wire In component and behaves much like the okToggleButton
except that graphically it appears as a checkbox with the label text on the right. When un-
checked, the corresponding wire is unasserted (logic 0). When checked, the corresponding wire
is asserted (logic 1).

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels. If no size is specified, the component is

automatically sized.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).

84

FrontPanel User’s Manual

www.opalkelly.com

XML Example:
<object class=”okToggleCheck”>
 <label>Autocount.</label>
 <position>20,135</position>
 <endpoint>0x00</endpoint>
 <bit>2</bit>
 <tooltip>Enable autocount.</tooltip>
</object>

okDigitEntry (Wire In)
This component allows a more flexible way to convey numerical information to your design. The
okDigitEntry attaches to one or more Wire In endpoints and allows the user to enter a numeri-
cal value using the mouse and/or keyboard. The bounds on the value are set in the component
properties.

The okDigitEntry component is designed to allow fast entry through either the mouse or key-
board. Using the mouse, you can hover over any digit and change its value using the scrollwheel.
Likewise, by pressing a number on the keyboard when a digit is highlighted, that particular digit is
changed and the highlight moves to the next digit on the right.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In. The entry

will span multiple consecutive endpoints as necessary.
bit NUMBER This bit on the endpoint is the LSB for the entry.
minvalue NUMBER The minimum allowed value in the entry.
maxvalue BIGNUMBER The maximum allowed value in the entry.
raidx NUMBER Numerical radix of the entry (2, 8, 10 [default], or 16).
value NUMBER The default value for the entry.

XML Example:
<object class=”okDigitEntry”>
 <position>5,215</position>
 <size>200,30</size>
 <tooltip>Sets the integer divider.</tooltip>
 <minvalue>0</minvalue>
 <maxvalue>16777215</maxvalue>
 <value>49837</value>
 <endpoint>0x07</endpoint>
 <bit>0</bit>
</object>

85

FrontPanel User’s Manual

www.opalkelly.com

okSlider (Wire In)

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).
minvalue NUMBER The minimum value on the slider.
maxvalue NUMBER The maximum value on the slider.
value NUMBER Default value taken when the profile is loaded.
style STYLE VERTICAL - Displays the slider vertically.

HORIZONTAL - Displays the silder horizontally.
SHOWLABELS - Show min/max/value labels.

XML Example:
<object class=”okSlider”>
 <position>310,5</position>
 <size>25,100</size>
 <label>Hi</label>
 <tooltip>4-bit vertical slider.</tooltip>
 <style>VERTICAL|SHOWLABELS</style>
 <minvalue>0</minvalue>
 <maxvalue>15</maxvalue>
 <value>3</value>
 <endpoint>0x04</endpoint>
 <bit>4</bit>
</object>

okCombobox (Wire In)
The okCombobox allows you to relate numerical values on a Wire In endpoint to text selections
in a traditional combobox. You specify the text items and a corresponding value. When that text
item is selected, the Wire In is updated with the value.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).
options XML This field is further broken down into ‘item’ tags as shown in

the example below. Each item tag is inserted in order into
the combobox.

Each item tag has a ‘value’ property which specifies the
Wire In value to be used for each item selection.

86

FrontPanel User’s Manual

www.opalkelly.com

XML Example:
<object class=”okCombobox”>
 <position>180,160</position>
 <size>100,-1</size>
 <options>
 <item value=”0”>Test mode</item>
 <item value=”1”>Standard mode</item>
 <item value=”2”>Block floating point mode</item>
 </options>
 <endpoint>0x01</endpoint>
 <bit>1</bit>
</object>

okLED (Wire Out)
This component implements a simple on/off indicator analagous to a physical LED. It is attached
to a specified bit on a specified Wire Out endpoint and monitors the status of that bit. Both the
style (round or square) and color (a 24-bit RGB value) may be specified.

The LED is on when the Wire Out is asserted (logic 1) and off when the Wire Out is deasserted
(logic 0). When on, the LED is displayed in the specified color. When off, the LED is darkened.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text. The optional ‘align’ property can be “left | right |

top | bottom” and specifies the text alignment relative to the
LED.

tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire Out.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).
color COLOR The LED “on” color. The “off” color is automatically com-

puted as a darker version of this color.
style STYLE ROUND - Displays a round LED.

SQUARE - Displays a square LED.

XML Example:
<object class=”okLED”>
 <position>135,50</position>
 <size>25,25</size>
 <label align=”top”>1</label>
 <style>SQUARE</style>
 <color>#00ff00</color>
 <endpoint>0x20</endpoint>
 <bit>1</bit>
</object>

okHex (Wire Out)
The okHex component displays four bits of a Wire Out endpoint as a hexadecimal digit. Multiple
okHex components may be attached to the same Wire Out endpoint. For example, to display an
entire byte in hex, you could display two okHex components side-by-side. Attach the left compo-
nent to bit 4 and the right component to bit 0.

87

FrontPanel User’s Manual

www.opalkelly.com

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire Out.
bit NUMBER Least-significant bit to which this component addresses.

The hex value comes from the specified bit and its three
neighbors to the left. For example, if bit=2, the hex value
will be taken from bits 5:2.

color COLOR Sets the numeral color.

XML Example:
<object class=”okHex”>
 <label>x[3:0]</label>
 <position>217,22</position>
 <size>35,50</size>
 <endpoint>0x20</endpoint>
 <bit>0</bit>
 <tooltip>Counter #1 (low nibble)</tooltip>
</object>

okDigitDisplay (Wire Out)
This component allows a flexible way to display numerical information to your design. The ok-
DigitDisplay is simply a read-only (Wire Out) version of the okDigitEntry. Just like the okDigitEn-
try, its endpoint attachment can span multiple Wire Out endpoints as necessary (according to the
‘maxvalue’ setting).

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire Out. The

display will span multiple consecutive endpoints as neces-
sary.

bit NUMBER This bit on the endpoint is the LSB for the display.
maxvalue BIGNUMBER The maximum allowed value in the display.
radix NUMBER Numerical radix of the entry (2, 8, 10 [default], or 16).

XML Example:
<object class=”okDigitDisplay”>
 <position>5,215</position>
 <size>200,30</size>
 <maxvalue>65535</maxvalue>
 <radix>16</radix>
 <endpoint>0x20</endpoint>
 <bit>0</bit>
</object>

88

FrontPanel User’s Manual

www.opalkelly.com

okGauge (Wire Out)
The okGauge component is used to display a bar-type indicator horizontally or vertically on the
panel. It connects to a Wire Out endpoint and allows a maximum range of 65535 (all 16-bits of a
Wire Out). It appropriately selects the proper number of bits for smaller ranges.

Element Type Description
position POSITION Position of the top-left corner.
size SIZE Size in pixels.
tooltip TEXT Tooltip text.
style TEXT Either “HORIZONTAL” or “VERTICAL”
endpoint HEX BYTE Endpoint address for the corresponding Wire Out.
bit NUMBER This bit on the endpoint is the LSB for the display.
range NUMBER The maximum allowed value in the display.

XML Example:
<object class=”okGauge”>
 <position>120,235</position>
 <size>150,15</size>
 <style>HORIZONTAL</style>
 <range>65535</range>
 <endpoint>0x33</endpoint>
 <bit>0</bit>
</object>

okTriggerButton (Trigger In)
The okTriggerButton appears identical to the okPushbutton but connects to a Trigger In endpoint.
The trigger is activated when the button is pushed (rather than when the button is released).

You may wish to denote that a particular button is a trigger by surrounding the label with hyphens.
In the example below, the button label is “- Reset -” to make the button appear different from an
okPushbutton.

Element Type Description
position POSITION Position of the top-left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Trigger In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).

XML Example:
<object class=”okTriggerButton”>
 <label>- Reset -</label>
 <position>20,110</position>
 <size>60,20</size>
 <endpoint>0x40</endpoint>
 <bit>0</bit>
 <tooltip>Reset Counter #2</tooltip>
</object>

89

FrontPanel User’s Manual

www.opalkelly.com

okTriggerSound (Trigger Out)
The okTriggerSound does not physically appear on a virtual panel. Instead, it is attached to the
panel and is activated when a trigger out is activated. Upon activation, it rings the system bell as
a brief audible notification of a trigger out event. An optional WAV file may be specified that will
play instead of the system bell.

Element Type Description
endpoint HEX BYTE Endpoint address for the corresponding Trigger In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).
label TEXT Label text, shown in the FrontPanel component list. (OP-

TIONAL)
soundfile FILENAME Filename of a WAV file to be played upon triggering. (OP-

TIONAL)

XML Example:
<object class=”okTriggerSound”>
 <endpoint>0x63</endpoint>
 <bit>3</bit>
 <label>Transfer complete trigger.</label>
 <soundfile>c:/Windows/Media/chimes.wav</soundfile>
</object>

okTriggerLog (Trigger Out)
okTriggerLog displays specified Trigger Out events along with a user-specified text message in
list form. Each trigger item within the list is stamped with the time (hh:mm:ss) of the occurrance.

Element Type Description
position POSITION Position of the top-left corner.
size SIZE Size in pixels.
trigger XML Adds a message to be entered in the log when a trigger

event occurs. The XML contains the ‘endpoint’, ‘bit’, and
‘message’ tags as shown in the example below.

XML Example:
<object class=”okTriggerLog”>
 <position>5,290</position>
 <size>350,100</size>
 <trigger>
 <endpoint>0x60</endpoint><bit>1</bit>
 <message>Your laundry is done.</message>
 </trigger>
 <trigger>
 <endpoint>0x61</endpoint><bit>0</bit>
 <message>Elvis (the cat) has left the building.</message>
 </trigger>
</object>

okTriggerMessage (Trigger Out)
okTriggerMessage displays a brief text message, similar to an okStaticText display, when a par-
ticular trigger occurs. Similar to okTriggerLog, you can setup a variety of messages to be dis-
played in the same area when any of a number of trigger outs occur.

90

FrontPanel User’s Manual

www.opalkelly.com

Element Type Description
position POSITION Position of the top-left corner.
size SIZE Size in pixels.
style STYLE Acceptable border styles are: (none means no border)

 SIMPLE_BORDER
 RAISED_BORDER
 SUNKEN_BORDER
Acceptable text styles are:
 ALIGN_LEFT (default)
 ALIGN_RIGHT
 ALIGN_CENTER

trigger XML Adds a message to be displayed when a trigger event
occurs. The XML contains ‘endpoint’, ‘bit’, ‘delay’, and
‘message’ tags as shown in the example below. The ‘delay’
parameter specifies an optional delay (in seconds), after
which the message will disappear.

XML Example:
<object class=”okTriggerMessage”>
 <position>5,290</position>
 <size>200,20</size>
 <style>RAISED_BORDER|ALIGN_CENTER</style>
 <trigger>
 <endpoint>0x60</endpoint><bit>1</bit>
 <message>Your laundry is done.</message>
 <delay>0.5</delay>
 <background>#ff0000</background>
 <foreground>#ffffff</foreground>
 </trigger>
 <trigger>
 <endpoint>0x61</endpoint><bit>0</bit>
 <message>Elvis (the cat) has left the building.</message>
 </trigger>
</object>

okFilePipe (Pipe In, Pipe Out, Trigger In)
This component provides simple binary file transfer capability through the use of Pipe In or Pipe
Outs. The type (In or Out) is automatically determined by the endpoint address. The component
appears as a pushbutton on your panel that can be clicked to initiate the transfer.

If no filename is provided, the user will be prompted with a File Dialog to select an appropriate
input or output file. If a filename is provided for Pipe In, but the file does not exist, the user will
also be prompted.

In the case of a Pipe In, the filename parameter provides an input file. The entire contents of the
file are transferred to the Pipe In. The transfer proceeds in chunks of 64kB until the entire file has
been transferred.

In the case of a Pipe Out, a length parameter must be provided to tell FrontPanel how many
bytes to read from the FPGA. The transfer proceeds in chunks of 64kB until the full length has
been read and stored.

91

FrontPanel User’s Manual

www.opalkelly.com

In both cases, an optional Start Trigger and optional Done Trigger are available. The Start Trig-
ger will be activated just before the transfer initiates. The Done Trigger is activated after the
transfer completes. These triggers can be used as notification events within your hardware.

To use a BlockPipeIn or BlockPipeOut, specify the blocksize parameter appropriately. Please
refer to the FrontPanel API Reference for blocksize limitations depending on the interface type.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Pipe In or Pipe

Out.
filename TEXT Optional filename to read or write. If not provided, the user

will be prompted.
length NUMBER For Pipe Out transfers, the length (in bytes) to read from

the Pipe Out and store in the file.
blocksize NUMBER Optionally specifies a block size to be used for Block Pipes.

If unspecified, standard Pipes will be used. If specified,
Block Pipes will be used.

append If present, an output file will be appended if it already ex-
ists.

starttrigger XML Describes the parameters of an optional Start Trigger (end-
point and bit).

donetrigger XML Describes the parameters of an optional Done Trigger (end-
point and bit).

XML Example:
<object class=”okFilePipe”>
 <label>Pipe Out</label>
 <position>20,53</position>
 <size>60,20</size>
 <endpoint>0xa0</endpoint>
 <length>5000</length>
 <tooltip>Read a file from Pipe 0xA0</tooltip>
 <append />
 <starttrigger><endpoint>0x40</endpoint><bit>0</bit></starttrigger>
 <donetrigger><endpoint>0x40</endpoint><bit>1</bit></donetrigger>
</object>

okPLL22150
This component provides an XML method to program the on-board PLL. When provided with a
“label” parameter, this component becomes a pushbutton on the panel GUI. When that button
is pressed, the PLL is configured with the given parameters. This allows you to specify multiple
PLL configuration and provide multiple buttons to access them without going through the PLL
dialog. A convenient tooltip lists the VCO and output frequencies for the configuration.

When the component does not have the “label” parameter, this configuration is loaded to the PLL
when the profile is loaded. It is not stored to EEPROM and the component does not create a GUI

92

FrontPanel User’s Manual

www.opalkelly.com

button. The only way to reconfigure the PLL (even after a new FPGA configuration file is loaded)
is to reload the profile.

Note that this element is ignored if the target device does not have a CY22150 PLL.

Element Type Description
position POSITION Position of the top left corner. (OPTIONAL)
size SIZE Size in pixels. (OPTIONAL)
label TEXT Label text, shown inside the button. (OPTIONAL)
p NUMBER VCO P multiplier. [8..2055]
q NUMBER VCO Q divider. [2..129]
divider1
divider2

NUMBER Divider 1 N value. [4..127]
The parameter “source” is a string that represents the
source of the divider:
“ref” - The reference (48 MHz) is used.
“vco” - The VCO frequency (48 * P / Q) is used.

output0
output1
...
output5

STRING This string is either “on” or “off” and turns the output on or
off. The parameter “source” is a string that represents the
source for the output:
“ref” - Use the reference (48 MHz).
“div1byn” - Use divider 1 source divided by divider 1 N.
“div1by2” - Use divider 1 source divided by 2.
“div1by3” - Use divider 1 source divided by 3.
“div2byn” - Use divider 2 source divided by divider 2 N.
“div2by2” - Use divider 2 source divided by 2.
“div2by4” - Use divider 2 source divided by 4.

XML Example:
<object class=”okPLL22150”>
 <label>PLL1 Configuration</label>
 <position>170,5</position>
 <size>100,15</size>
 <p>400</p>
 <q>48></q>
 <divider1 source=”vco”>8</divider1>
 <output0 source=”div1byn”>on</output0>
</object>

okPLL22393
This component provides an XML method to program the on-board PLL. When provided with a
“label” parameter, this component becomes a pushbutton on the panel GUI. When that button
is pressed, the PLL is configured with the given parameters. This allows you to specify multiple
PLL configuration and provide multiple buttons to access them without going through the PLL
dialog. A convenient tooltip lists the VCO and output frequencies for the configuration.

When the component does not have the “label” parameter, this configuration is loaded to the PLL
when the profile is loaded. It is not stored to EEPROM and the component does not create a GUI
button. The only way to reconfigure the PLL (even after a new FPGA configuration file is loaded)
is to reload the profile.

93

FrontPanel User’s Manual

www.opalkelly.com

Note that this element is ignored if the target device does not have a CY22393 PLL. Also note
that the convention here is to label PLLs and outputs as 0-indexed (0, 1, 2, ...) rather than in-
dexed from 1 as the Cypress documentation does.

Element Type Description
position POSITION Position of the top left corner. (OPTIONAL)
size SIZE Size in pixels. (OPTIONAL)
label TEXT Label text, shown inside the button. (OPTIONAL)
pll0
pll1
pll2

none This parameter has no content, but does have the following
properties:
P - Specifies the P multiplier for the PLL. [6..2053]
Q - Specifies the Q divider for the PLL. [2.257]

output0
output1
...
output4

STRING This string is either “on” or “off” and turns the output on or
off.
The property “source” is a string that represents the source
for the output:
“ref” - Use the reference (48 MHz).
“pll0_0” - PLL ouput 0 with 0˚ phase shift.
“pll0_180” - PLL ouput 0 with 180˚ phase shift.
“pll1_0” - PLL ouput 1 with 0˚ phase shift.
“pll1_180” - PLL ouput 1 with 180˚ phase shift.
“pll2_0” - PLL ouput 2 with 0˚ phase shift.
“pll2_180” - PLL ouput 2 with 180˚ phase shift.

The property “divider” specifies the integer divider for the
output. [1..127] for outputs 0..3 and [2,3,4] for output 4.

XML Example:
<object class=”okPLL22393”>
 <label>PLL1 Configuration</label>
 <position>170,5</position>
 <size>100,15</size>
 <pll0 p=”400” q=”48”/>
 <pll1 p=”397” q=”43”/>
 <output0 source=”pll0_0” divider=”8”>on</output0>
 <output1 source=”pll1_180” divider=”16”>on</output0>
</object>

okKeyPanel (Wire In, Trigger In)
The okKeyPanel component allows keyboard input to be captured and mapped to selected Wire
In and Trigger In endpoints. Multiple okKeyPanels may be instantiated on the same okPanel al-
lowing the same keyboard events to map to different behaviors depending on which okKeyPanel
is active.

The okKeyPanel appears on a panel as a simple box with a text label within. When the mouse is
over the component, it changes color to indicate that it is active. When active, keyboard events
are captured and mapped to HDL endpoints according to the XML description. Three behaviors
are available: KeyButton, KeyToggle, and KeyTrigger.

KeyButton
The KeyButton works like a pushbutton. The Wire In is asserted when the key is pressed and
deasserted when the key is released.

94

FrontPanel User’s Manual

www.opalkelly.com

KeyToggle
The KeyButton is like a toggle button. On the key downstroke, the Wire In is toggled. Nothing
happens on the upstroke.

KeyTrigger
The KeyTrigger activates a Trigger In when the keyboard event occurs. By default, the keyboard
event is defined as the key downstroke. However, with the optional <up/> tag within the XML, the
KeyTrigger can map to the upstroke. By defining both the upstroke and downstroke to the same
key, triggers can be sent on each end of a keypress.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text.
color COLOR Sets the component’s active color.
keys XML XML describing the key mapping from keyboard events to

HDL endpoints. See the table below for more details.

The following table describes the nodes of the <key> XML element within the component de-
scription. This mapping is used to associate a keyboard event with an HDL endpoint.

Element Type Description
KeyButton XML Defines a KeyButton behavior on the provided keycode to

the associated Wire In endpoint. The “keycode” property
defines the mapped key.

KeyToggle XML Defines a KeyTrigger behavior on the provided keycode to
the associated Wire In endpoint. The “keycode” property
defines the mapped key.

KeyTrigger XML Defines a KeyTrigger behavior on the provided keycode to
the associated Trigger In endpoint. The “keycode” property
defines the mapped key.

The table below lists the recognized keycodes.

KEY_A ... KEY_Z KEY_UP KEY_NUMPAD0 ... KEY_NUMPAD9
KEY_0 ... KEY_9 KEY_DOWN KEY_NUMLOCK
KEY_F1 ... KEY_F24 KEY_LEFT KEY_NUMPADDIV
KEY_BACK KEY_RIGHT KEY_NUMPADMULT
KEY_TAB KEY_INSERT KEY_NUMPADADD
KEY_RETURN KEY_DELETE KEY_NUMPADSUB
KEY_ESCAPE KEY_END KEY_NUMPADDECIMAL
KEY_SPACE KEY_HOME
KEY_SHIFT KEY_PGUP
KEY_CONTROL KEY_PGDOWN

95

FrontPanel User’s Manual

www.opalkelly.com

XML Example:
<object class=”okKeyPanel”>
 <label>Key Panel A</label>
 <color>#b0f0b0</color>
 <position>5,260</position>
 <size>100,55</size>
 <keys>
 <KeyButton keycode=”KEY_UP”>
 <endpoint>0x00</endpoint><bit>0</bit>
 </KeyButton>
 <KeyToggle keycode=”KEY_DOWN”>
 <endpoint>0x00</endpoint><bit>1</bit>
 </KeyButton>
 <KeyTrigger keycode=”KEY_A”>
 <endpoint>0x40</endpoint><bit>1</bit>
 </KeyTrigger>
 <KeyTrigger keycode=”KEY_A”>
 <up/>
 <endpoint>0x40</endpoint><bit>1</bit>
 </KeyTrigger>
 </keys>
</object>

96

FrontPanel User’s Manual

www.opalkelly.com

97

FrontPanel User’s Manual

www.opalkelly.com

FrontPanel Host Simulation

Hardware simulation is a valuable tool used to reduce design cycles and quickly debug a hard-
ware design. While debug outputs to real instruments (logic analyzers and oscilloscopes) as well
as the virtual instruments supported by FrontPanel can help in the controllability and observability
of a design, nothing can match the flexibility offered by simulation.

Unfortunately, full system simulation is often difficult to attain. Simulation models of external
hardware are often not available. More importantly, integration of the hardware simulation with
software can be difficult.

The FrontPanel API provides a simple, capable, and convenient communication interface be-
tween the hardware design residing within the FPGA and a user application running on a PC
host. The Opal Kelly FrontPanel Host Simulation Libraries allow simulation of this PC host within
a hardware simulation.

System Simulation Model
The block diagram below illustrates the system simulation model for the Host Simulation Librar-
ies. The FPGA design encompasses the user’s HDL design as well as the okHost module and
endpoint modules (such as okWireIn and okPipeOut). In a live system, the okHost communi-
cates with the USB microcontroller on the FPGA board which, in turn, communicates with the PC
and software API. In the simulation system, the okHost is replaced by a simulation model which
communicates with a simulation model for the Host. The user’s simulation test fixture executes
host directives as if they were software API calls.

98

FrontPanel User’s Manual

www.opalkelly.com

okTriggerIn

okWireOut

okHost

User’s HDL

okWireIn

okPipeIn

PC Host

Simulation Host

Complete FPGA Design

The goal of this type of simulation model is to simulate the complete FPGA design without hav-
ing to make changes specific to the simulation model. In reality, many designs will require some
modification, but in this case the host can be simulated as realistically as possible.

Simulation Requirements
The Opal Kelly FrontPanel Host Simulation Libraries are provided as source HDL to allow for
compatibility with a wide range of simulation packages. Examples are provided below for Mod-
elsim and iSim packages packaged with the Xilinx ISE and Altera Quartus toolsets. Verilog and
VHDL source is located in the directories under the Simulation subdirectories of the FrontPanel
installation location for compilation with the users test fixture.

Limitations
Opal Kelly’s FrontPanel Host Simulation library is for behavioral simulation only. Post place &
route simulation is not supported.

Test Fixture Simulation Requirements
A test fixture which simulates the FrontPanel Host requires the following components:

1. Instantiation of the device under test (DUT). This is required in any test fixture.

2. A behavioral block which calls the Host Simulation Library to mimic the FrontPanel API.

3. Inclusion of okHostCalls to simulate the various host API functions.
Verilog: Include okHostCalls.v in the test fixture with ‘include “okHostCalls.v”
VHDL: User must copy indicated code segment from okHostCalls_vhd.txt into the test
fixture process.

The last two items are specific to FrontPanel Host Simulation. The table below lists the
FrontPanel API calls that are available within the Host Simulation Library. In most cases, the
parameters are identical to the corresponding FrontPanel API calls.

SetWireIns GetWireOutValue
ActivateTriggerIn IsTriggered
WriteToPipeIn ReadFromPipeOut
WriteToBlockPipeIn ReadFromBlockPipeOut
WriteRegister (USB 3.0) ReadRegister (USB 3.0)

99

FrontPanel User’s Manual

www.opalkelly.com

UpdateWireIns UpdateWireOuts
UpdateTriggerOuts FrontPanelReset

Reset
In a live FPGA design, the FPGA automatically performs a reset of all logic within the fabric after
configuration. This assures that the entire design start in a known state which is established by
the design.

In a simulation environment, this reset signal is not always simulated and some signals may start
in an unknown state. The FrontPanelReset call will reset the host interface functions and as-
sure that the simulation starts off in a known state. It is therefore recommended that your simula-
tion issue a call Reset at the beginning of the simulation.

Simulating Pipes
Pipe transfer calls utilize global array variables in the test fixture to store the data that will be
transmitted or received. These global variables must be declared within the user’s testbench if
any pipe functionality is to be simulated. In addition, the three parameters BlockDelayStates,
ReadyCheckDelay, and PostReadyDelay determine how many clock periods exist between
various pipe functions to help simulate possible delays that may occur in actual hardware.
BlockDelayStates adds delay between transfers of blocks of data, ReadyCheckDelay simu-
lates a lag in clocks before a Block Pipe module checks for a valid EP_READY signal, and
PostReadyDelay simulates a delay after EP_READY is asserted before the next block of data is
piped.

An example setup for these requirements is shown here:

parameter BlockDelayStates = 5; // REQUIRED: # of clocks between blocks of pipe data
parameter ReadyCheckDelay = 5; // REQUIRED: # of clocks before block transfer before
 // host interface checks for ready (0-255)
parameter PostReadyDelay = 5; // REQUIRED: # of clocks after ready is asserted and
 // check that the block transfer begins (0-255)
parameter pipeInSize = 16383; // REQUIRED: byte (must be even) length of default
 // PipeIn; Integer 0-2^32
parameter pipeOutSize = 16383; // REQUIRED: byte (must be even) length of default
 // PipeOut; Integer 0-2^32
reg [7:0] pipeIn [0:(pipeInSize-1)];
reg [7:0] pipeOut [0:(pipeOutSize-1)];

After a call to ReadFromPipeOut or ReadFromBlockPipeOut the received data will be in the byte-
wide register array pipeOut, arranged as it would be after a call to the C++ method. Similarly,
before a call to WriteToPipeIn or WriteToBlockPipeIn the transmitted data should be setup in
the byte-wide register array pipeIn. More pipe data arrays may be added as needed by copying
and modifying the default pipe functions.

Simulation Sample
A simulation sample is included with FrontPanel to help get you started. The sample include a
hypothetical FPGA design with a pseudo-random sequence generator (PRSG) with some param-
eters under control from the host PC.

Required Files
The following table lists the files required for the simulation along with a brief description.

100

FrontPanel User’s Manual

www.opalkelly.com

Filename Description
sim.[v|vhd] This is the source HDL for the simulation example (DUT).
sim_tf.[v|vhd] This is the test fixture HDL for the simulation.
sim.do This files contains the ModelSim commands to setup, compile, and run

the simulation. (Required for Modelsim only)
sim_isim.bat This is the iSim batch file to setup, compile, and run the simulation.

(Required for iSim only)
sim_isim.prj iSim project file. Lists source files for iSim simulation.

(Required for iSim only)
sim_isim.tcl iSim command script for waveform setup.

(Required for iSim only)

Running the Simulation
1. Copy project simulation files above from the FrontPanel installation directory

$(FRONTPANEL)/Samples/Simulation/USB[2|3]/[Verilog|VHDL] to a work directory
$(WORKDIRECTORY).

2. Copy the simulation models frlom $(FRONTPANEL)/Simulation/USB[2|3]/[Verilog|VHDL]
to $WORKDIRECTORY/oksim

Modelsim
1. Start Modelsim.

2. In the Transcript window, CD to your WORK DIRECTORY:
cd YOUR_WORK_DIRECTORY

3. Execute the simulation script:
do sim.do

The simulation should run to completion. By selecting the “Wave” window, you should see some-
thing like this in Modelsim:

Xilinx ISE iSim
1. Open an ISE Design Suite Command Prompt

2. CD to your WORK DIRECTORY:
cd YOUR_WORK_DIRECTORY

3. Execute the simulation script:
sim_isim.bat

101

FrontPanel User’s Manual

www.opalkelly.com

Analyzing the Results
The important stimulus from sim_tf.v comes from the statements within the “initial” block and the
tasks called from within that block. In sim_tf.vhd, the important stimulus comes from the state-
ments within the main process after “begin” and the procedures outside the okHostCalls section.

The simulated hardware includes a register that can be used either as a standard counter or as a
32-bit Linear Feedback Shift Register (LFSR). The test fixture uses a TriggerIn endpoint to select
the mode and WireIns to seed the register with an initial value. It then reads those values using a
WireOut endpoint. Note that the values read are not sequential in this portion of the simulation.

When the test fixture sets the hardware register to “piped” mode, it can read sequential values
from the LFSR using a PipeOut endpoint. This is because in “piped” mode the register updates
only when the pipe is being read, thus avoiding any potential timing issues that arise when the
pipe is interrupted by other processes.

In the USB3 version of the test fixture, the okRegisterBridge endpoint is used to interface with
block RAM on the simulated FPGA. The values that are read from the block RAM should be
the same as the values that are written to the block RAM. Note that in the VHDL simulation, the
process will repeat as long as the simulation is actively running. In Verilog, no further stimulus is
applied to the signals once the statements in the initial block have been executed.

Simulation Accuracy
Many of the simulated calls to the FrontPanel host occur more quickly than the equivalent calls
that are applied to a physical FPGA. The bandwidth constraints on USB and other operating sys-
tem issues will cause them to happen much slower. In the interest of simulation speed, however,
we have accelerated the response time of some of the host simulation actions. The user may,
at his or her discretion, place additional delays within the simulation in order to better model the
speed of the real host interface. In most cases, this will not be necessary.

102

FrontPanel User’s Manual

www.opalkelly.com

103

FrontPanel User’s Manual

www.opalkelly.com

Appendix A: A Simple Example

This basic example quickly introduces the basic concepts of the
Wire In and Wire Out endpoints by linking real and virtual pushbut-
tons to real and virtual LEDs. The XML and HDL descriptions are
short and concise, making this example a great place to start with
FrontPanel.

This sample is available for all FrontPanel devices.

The First FrontPanel sample contains the following files:

File Description
First.xfp FrontPanel profile (text-readable XML).
first.bit Xilinx configuration file produced from ISE.
Verilog/First.v Verilog description of the project’s toplevel.
Verilog/First.ucf Xilinx constraints file containing pin location constraints.

When the profile is loaded into FrontPanel, it creates a user interface that looks like this:

104

FrontPanel User’s Manual

www.opalkelly.com

Toplevel Description
The file First.v contains the Verilog description of the project, including all pins which are physi-
cally connected to the FPGA. It’s entire contents are listed below: (Note that, while the USB
version is shown here, the PCIe version is strikingly similar.)

module toplevel(
 input wire [7:0] hi_in,
 input wire [1:0] hi_out,
 inout wire [15:0] hi_inout,

 output wire [7:0] led,
 input wire [3:0] button
);

// Target interface bus:
wire ti_clk;
wire [30:0] ok1;
wire [16:0] ok2;

// Endpoint connections:
wire [15:0] ep00wire;
wire [15:0] ep01wire;
wire [15:0] ep02wire;
wire [15:0] ep20wire;
wire [15:0] ep21wire;

assign led = ~ep00wire;
assign ep20wire = {12’b0000, ~button};
assign ep21wire = ep01wire + ep02wire;

// Instantiate the okHost and connect endpoints.
wire [17*2-1:0] ok2x;
okHost okHI(.hi_in(hi_in), .hi_out(hi_out), .hi_inout(hi_inout),
 .ti_clk(ti_clk), .ok1(ok1), .ok2(ok2));

okWireIn ep00 (.ok1(ok1), .ep_addr(8’h00), .ep_dataout(ep00wire));
okWireIn ep01 (.ok1(ok1), .ep_addr(8’h01), .ep_dataout(ep01wire));
okWireIn ep02 (.ok1(ok1), .ep_addr(8’h02), .ep_dataout(ep02wire));

okWireOut ep20 (.ok1(ok1), .ok2(ok2x[0*17 +: 17]),
 .ep_addr(8’h20), .ep_datain(ep20wire));
okWireOut ep21 (.ok1(ok1), .ok2(ok2x[1*17 +: 17]),
 .ep_addr(8’h21), .ep_datain(ep21wire));

endmodule

Listed inside the module definition are several wires. Most of these are for the FrontPanel host
interface. The two other busses, LED[7:0] and BUTTON[3:0] connect to the LEDs and pushbut-
tons on the XEM3001. Their specific pin locations are constrained in First.ucf.

Target Logic
The logic description for this example is very simple and only consists of three lines of HDL
connecting the Wire In endpoint to the physical LEDs and the Wire Out endpoint to the physical
pushbuttons.

The LEDs are attached to endpoint 0x00 and the pushbuttons are attached to endpoint 0x20. An
adder is inferred on two of the Wire Ins (0x01 and 0x02) with the result sent to a Wire Out (0x21).

105

FrontPanel User’s Manual

www.opalkelly.com

assign led = ~ep00wire;
assign ep20wire = {12’b0000, ~button};
assign ep21wire = ep01wire + ep02wire;

FrontPanel Interface Modules
This design contains three FrontPanel interface modules: okHostInterface, okWireIn, and okWir-
eOut. Their instantiation is pretty straightforward. We have chosen to call the endpoint wires
ep00wire and ep20wire for clarity.

FrontPanel XML Description
The user’s interface shown at the beginning of this example is described in XML and shown
below. Only one instance of the okToggleButton and one instance of the okLED are shown for
brevity. The others instances are similar with the exception of their position tag and endpoint bit.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!--
First FrontPanel Example
Copyright (c) 2004, Opal Kelly Incorporated
-->

<resource version=”2.3.0.1”>
<object class=”okPanel” name=”panel1”>
 <title>First FrontPanel Example</title>
 <size>180,70</size>

 <object class=”okToggleButton”>
 <label>1</label>
 <position>10,10</position>
 <size>20,20</size>
 <endpoint>0x00</endpoint>
 <bit>0</bit>
 </object>

 ... other okToggleButton objects removed ...

 <!-- LEDs -->
 <object class=”okLED”>
 <position>48,40</position>
 <size>25,25</size>
 <label>1</label>
 <style>SQUARE</style>
 <color>#00ff00</color>
 <endpoint>0x20</endpoint>
 <bit>0</bit>
 </object>

 ... other okLED objects removed ...

</object>
</resource>

Each FrontPanel XML description must contain the <?xml> tag shown at the top as well as the
<resource ...> and </resource> tags as they are required by the FrontPanel XML parser.

okPanel
The first object specified is the okPanel object which has a “name” property with value “panel1”.
FrontPanel looks for these properties when loading a profile. They must be sequenced panel1,

106

FrontPanel User’s Manual

www.opalkelly.com

panel2, and so on. The okPanel object also has two child nodes serving as parameters for the
okPanel as listed in the table below:

Node Name Description
title This is the title of the dialog window created when you view this panel.
size The size of the dialog, in pixels: Width,Height.

The okPanel object also has two child nodes which are FrontPanel components, okToggleButton
and okLED. Because they are children of the okPanel object, they will appear on this particular
panel.

okToggleButton
The toggle button is described with child nodes as indicated in the table below.

Node Name Description
label This is a label that will be placed inside the toggle button.
position The position of the top-left corner of the component, in pixels: X,Y.
size The size of the component, in pixels: Width,Height.
endpoint The endpoint address (expressed in hexadecimal) for this toggle button’s

Wire In endpoint.
bit The specific bit on the endpoint address that this toggle button controls.

okLED
The LED is described with child nodes as indicated in the table below.

Node Name Description
label This is a label that will be placed below the LED.
position The position of the top-left corner of the component, in pixels: X,Y.
size The size of the component, in pixels, specified as Width,Height. This size

includes the LED and its label.
style LED style: SQUARE or ROUND
color The 24-bit color of the LED as #RRGGBB.
endpoint The endpoint address (expressed in hexadecimal) for this LED’s Wire

Out endpoint.
bit The specific bit on the endpoint address that this LED monitors.

okDigitEntry and okDigitDisplay
These two components are described in more detail in the Component XML section of this
User’s Manual. They provide a convenient way to enter and display multi-bit integers. They sup-
port multiple radixes, as well.

Other Samples
The standard FrontPanel installation includes other samples including samples which illustrate
use of the C++ and other programmer’s interfaces. A summary of these samples is shown be-
low. They are placed in the installation directory in the Samples folder.

107

FrontPanel User’s Manual

www.opalkelly.com

Sample FrontPanel C++ C# Python Java Description

First
A very simple FrontPanel-only project to get started
quickly.

Counters

Displays two independent counters with controls for
each. Since it is implemented in FrontPanel, C++,
and Python, it is a good start for those wanting to
learn the APIs.

Controls
This sample is a showcase of the FrontPanel compo-
nents available.

PipeTest
Connects to PipeIn and PipeOut modules on the
FPGA to test transfer rates. Block sizes can be set by
the user.

DES
A command-line sample based on the OpenCores.org
triple-DES encryption and decryption core.

RAMTester
Command-line sample to read/write FPGA-attached
memory.

Flashloader
Command-line sample used to program on-board
Flash for FPGA boot configuration.

108

FrontPanel User’s Manual

www.opalkelly.com

109

FrontPanel User’s Manual

www.opalkelly.com

Appendix B: The Counters Sample

This sample is a bit more complicated than the simple example
and showcases a few more features of FrontPanel and the
XEM3001.

This sample is designed to work with the XEM3001.

The Counters sample is a bit more complicated than the previous example. It includes a few
more FrontPanel components and also adds a few Trigger endpoints. More importantly, though,
it adds more hardware in the form of HDL so you can see how FrontPanel integrates with HDL in
a slightly more complicated setup.

The FrontPanel virtual interface for this sample is shown below:

Hardware Description
The hardware for the Counters sample has two counters, the okHostInterface, a single Wire In
endpoint, three Wire Out endpoints, and a Trigger In endpoint. The hardware also routes to the
LEDs on the XEM3001.

110

FrontPanel User’s Manual

www.opalkelly.com

Counter #1
The first counter is an 8-bit up counter with enable, synchronous reset, and disable. The enable
signal is generated by a separate 24-bit counter to make the count progression slower. The Ver-
ilog HDL for this counter and its clock divider counter is shown here:

always @(posedge clk1) begin
 div1 <= div1 - 1;
 if (div1 == 24’h000000) begin
 div1 <= 24’h400000;
 clk1div <= 1’b1;
 end else begin
 clk1div <= 1’b0;
 end

 if (clk1div == 1’b1) begin
 if (reset1 == 1’b1)
 count1 <= 8’h00;
 else if (disable1 == 1’b0)
 count1 <= count1 + 1;
 end
end

From the description, we gather that when RESET1 is asserted, the counter will hold the value
0x00. When DISABLE1 is asserted, the counter holds its current value. Otherwise, the counter
will increment each time the clock divider counter expires.

Note that this counter operates on CLK1 which is mapped to LCLK1 on the PLL.

Counter #2
The second counter operates on CLK2 which is mapped to LCLK2 on the PLL. Using the PLL
Configuration Dialog, we will be able to observe the effects of changing the PLL frequencies on
the two counters.

The Verilog HDL for this counter and its own divider is listed below. This counter will count up
when UP2 is asserted, count down when DOWN2 is asserted, and automatically count up when
AUTOCOUNT2 is asserted. Note that UP2 and DOWN2 must be asserted for exactly one CLK2
cycle for the counter to count only one. This is why we have the Trigger endpoints.

always @(posedge clk2) begin
 div2 <= div2 - 1;
 if (div2 == 24’h000000) begin
 div2 <= 24’h100000;
 clk2div <= 1’b1;
 end else begin
 clk2div <= 1’b0;
 end

 if (reset2 == 1’b1)
 count2 <= 8’h00;
 else if (up2 == 1’b1)
 count2 <= count2 + 1;
 else if (down2 == 1’b1)
 count2 <= count2 - 1;
 else if ((autocount2 == 1’b1) && (clk2div == 1’b1))
 count2 <= count2 + 1;
end

111

FrontPanel User’s Manual

www.opalkelly.com

Endpoints
This sample uses several endpoints to provide controllable inputs to the hardware and observ-
able outputs to FrontPanel. To reduce the number of endpoints, we have chosen to share them
among the counters.

Wire In (0x00)
The only Wire In endpoint is used to carry the RESET1, DISABLE1, and AUTOCOUNT2 signals.
These are wires because we want them to have a static state rather than one-shot signals.

Signal Bit(s) Description
RESET1 0 When asserted, Counter #1 holds the value 0x00 and does not

count.
DISABLE1 1 When asserted, Counter #2 holds its value and does not count.
AUTOCOUNT2 2 Configures counter #2 to autocount.
Unused 15:3

Trigger In (0x40)
The only Trigger In endpoint is used for the Counter #2 inputs. These are triggers because we
want single events (one-shots) to occur, such as a count-up event.

Note that RESET2 behaves the same as RESET1 but we want to have RESET2 behave as a
one-shot event so that the user cannot hold RESET2 asserted. Therefore, we attach this one to
a Trigger.

Signal Bit(s) Description
RESET2 0 When asserted, Counter #2 resets to 0x00 and does not count.
UP2 1 When asserted, Counter #2 counts up.
DOWN2 2 When asserted. Counter #2 counts down.
Unused 15:3

Wire Out (0x20, 0x21, and 0x22)
These wires provide observables for FrontPanel. They are connected as follows:

Endpoint Signal Description
Wire Out 0x20 COUNT1[7:0] Counter #1 value.
Wire Out 0x21 COUNT2[7:0] Counter #2 value.
Wire Out 0x22 BUTTON[3:0] The lower four bits of this wire bundle contain the status

of the on-board pushbuttons. If a button is pressed, the
corresponding wire will be asserted.

112

FrontPanel User’s Manual

www.opalkelly.com

FrontPanel Components
The user interface for the Counters sample includes two panels. The first panel contains five but-
tons, four hex displays, eight LEDs, and a check box. There are also two cosmetic components
called okStaticBox which are used to group the components visually. The second panel simply
contains four LEDs used to display the state of the pushbuttons.

Panel 1: Counters Example
The active FrontPanel components are listed below with their corresponding endpoints:

Component Label Endpoint Bit
okPushbutton Reset 0x00 0
okPushbutton Disable 0x00 1
okTriggerButton - Reset - 0x40 0
okTriggerButton - Up - 0x40 1
okTriggerButton - Down - 0x40 2
okToggleCheck Autocount. 0x00 2
okHex x[7:4] 0x20 4
okHex x[3:0] 0x20 0
okHex y[7:4] 0x21 4
okHex y[3:0] 0x21 0
okLED 7 0x20 7
okLED 6...1 0x20 6...1
okLED 0 0x20 0

Note that the okLED and two of the okHex components share endpoint 0x20. FrontPanel allows
this and will update both components when Wire Out endpoints change. It is also possible to
map two components to input endpoints.

Panel 2: Pushbuttons
The second panel is not automatically opened when the Conters XFP file is loaded. You can
open it by pressing the number `2’ on your keyboard or navigating to

 View → Pushbuttons

at the top of the FrontPanel window. This displays a small window with the following compo-
nents:

Component Label Endpoint Bit/Mask
okLED 3 0x22 3
okLED 2 0x22 2
okLED 1 0x22 1
okLED 0 0x22 0

	An Introduction to FrontPanel
	Terminology
	Basic Functionality
	Peripheral Configuration

	Flexibility Outside the Design
	Controllability
	Observability

	XML and FrontPanel Components
	HDL Endpoints
	Application Programmer’s Interface (API)

	Designing with FrontPanel
	Endpoints
	Wires
	Triggers
	Pipes
	Block-Throttled Pipes
	Registers

	Components
	Performance Notes
	Wires and Triggers
	Pipes (Bulk Transfers)
	Block-Throttled Pipes (Bulk Transfers)
	Isochronous Transfers?

	Application Programmer’s Interface
	API Reference Guide
	Samples

	Organization
	Loading the Library
	The okCFrontPanel Class
	Device Interaction (USB and PCI Express)
	Device Configuration
	FPGA Communication

	Communicating with Multiple Devices
	Querying Attached Devices
	Connecting to a Specific Device

	PLL Configuration
	Preset PLL Configuration
	Software PLL Configuration

	System Flash (USB 3.0)
	API Communication
	Wires
	Triggers
	Pipes
	Block-Throttled Pipes
	Registers (USB 3.0)

	Reset Profiles (USB 3.0 Only)
	Device Sensors (USB 3.0 Only)
	GetDeviceSensors API
	Device Sensor Parameters

	Device Settings (USB 3.0 Only)
	Persistent Settings
	Non-Persistent Settings
	Setting Store

	FrontPanel API Example Usage
	Regarding Device Ownership (Multithread or Multiprocess Access)
	32-bit and 64-bit Architectures
	Windows DLL Usage

	Wrapped APIs
	Getters and Setters
	Data Types

	Python API
	Required Files
	Example Usage

	Java API
	Required Files
	Example Usage

	C# API
	Required Files
	Example Usage

	FrontPanel DLL
	QNX Usage
	Example Usage (C/C++)
	Example Usage (Matlab)

	Matlab API
	DLL Header File
	Support Status

	HDL Modules
	Endpoint Types
	Endpoint Addresses
	Register Bridge (USB 3.0 Only)

	Endpoint Data Widths
	Host Interface Clock Speed
	Building FPGA Projects with FrontPanel HDL Modules

	 HDL Modules - USB 2.0
	XEM3001v1 Note
	FPGA Resource Requirements
	Wire-OR
	The Host Interface
	okHost
	okWireIn
	okWireOut
	okTriggerIn
	okTriggerOut
	okPipeIn
	okPipeOut
	okBTPipeIn
	okBTPipeOut

	HDL Modules - USB 3.0
	FPGA Resource Requirements
	Wire-OR
	The Host Interface
	okHost
	okWireIn
	okWireOut
	okTriggerIn
	okTriggerOut
	okPipeIn
	okPipeOut
	okBTPipeIn
	okBTPipeOut
	okRegisterBridge

	 HDL Modules - PCI Express
	FPGA Resource Requirements
	Wire-OR
	The Host Interface
	okHost
	okWireIn
	okWireOut
	okTriggerIn
	okTriggerOut
	okPipeIn
	okPipeOut

	Using the FrontPanel Application
	Main Window
	Load a FrontPanel Profile
	FPGA Configuration Download
	Device Setup
	Flash Programming Tool

	Device Sensors Panel
	PLL Configuration (CY22150)
	VCO Setup
	Divider #1 and #2
	Outputs
	EEPROM Read
	EEPROM Write
	Apply
	Example PLL Configurations

	PLL Configuration (CY22393)
	Preferences
	Wire Update Rate
	Configure PLL Before FPGA Download
	Show Panels in Taskbar
	Enable Asynchronous Transfers (USB devices only)

	Command Line Arguments
	Loading a Bitfile
	Loading a FrontPanel Profile
	Selecting a Device by Serial Number

	Component XML
	XML
	Basic Structure for FrontPanel
	Comments
	Start-Tags and End-Tags
	Case Sensitivity

	Element Data Types
	Component Types
	okStaticText
	okStaticBox
	okPushbutton (Wire In)
	okToggleButton (Wire In)
	okToggleCheck (Wire In)
	okDigitEntry (Wire In)
	okSlider (Wire In)
	okCombobox (Wire In)
	okLED (Wire Out)
	okHex (Wire Out)
	okDigitDisplay (Wire Out)
	okGauge (Wire Out)
	okTriggerButton (Trigger In)
	okTriggerSound (Trigger Out)
	okTriggerLog (Trigger Out)
	okTriggerMessage (Trigger Out)
	okFilePipe (Pipe In, Pipe Out, Trigger In)
	okPLL22150
	okPLL22393
	okKeyPanel (Wire In, Trigger In)

	FrontPanel Host Simulation
	System Simulation Model
	Simulation Requirements
	Limitations

	Test Fixture Simulation Requirements
	Reset
	Simulating Pipes

	Simulation Sample
	Required Files
	Running the Simulation
	Analyzing the Results
	Simulation Accuracy

	Appendix A: A Simple Example
	Toplevel Description
	Target Logic
	FrontPanel Interface Modules

	FrontPanel XML Description
	okPanel
	okToggleButton
	okLED
	okDigitEntry and okDigitDisplay

	Other Samples

	Appendix B: The Counters Sample
	Hardware Description
	Counter #1
	Counter #2

	Endpoints
	Wire In (0x00)
	Trigger In (0x40)
	Wire Out (0x20, 0x21, and 0x22)

	FrontPanel Components
	Panel 1: Counters Example
	Panel 2: Pushbuttons

